Tag Archives: biology

MAC Mode Cantilevers for Keysight, Agilent and Molecular Imaging AFMs now available from NANOSENSORS

Do you have a Keysight, Agilent or Molecular Imaging Atomic Force Microscope in your lab? Are you using MAC Mode (Keysight Technologies’ patented magnetic AC mode ) to image soft samples or for imaging in fluids?
Then NANOSENSORS™ has the right cantilevers for you.

MAC mode imaging of lambda phage DNA in a buffer solution. Image courtesy of Keysight Technologies
MAC mode imaging of lambda phage DNA in a buffer solution. Image courtesy of Keysight Technologies

On the NANOSENSORS Special Developments List you will find all the cantilevers you need to continue working with MAC Mode.

Keysight TYPE II MAC Levers (PN: N9812x) – NANOSENSORS special development code: SD-MAC-Type2

Keysight TYPE VII MAC Levers (PN: N9866x) – NANOSENSORS special development code: SD-MAC-Type7

Keysight TYPE VIII MAC Levers (PN: N9867x) – NANOSENSORS special development code: SD-MAC-Type8

Keysight TYPE IX MAC Levers (PN: N9811x) – NANOSENSORS special development code: SD-MAC-Type9

MAC Mode Cantilevers for Keysight, Agilent and Molecular Imaging Atomic Force Microscopy
MAC Mode Cantilevers for Keysight, Agilent and Molecular Imaging Scanning Probe Microscopes

Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils

For this article the AFM images taken with tapping mode in Tris buffer solution were performed with the NANOSENSORS qp-BioAC (cantilever 3, resonance frequency 30kHz).

Figure 5 from Yordanova et. al. "Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils" - AFM image of the Zn2+: GnRH [6-D-Phe] 10:1 complex. (a,b) Oligomers after preparation with tapping mode in Tris buffer solution (c,d) fibrils with tapping mode in air (z-scale indicates the average size of the formed oligomers and fibrils). NANOSENSORS qp-BioAC AFM probe was used to perform images in buffer solution
Figure 5 from Yordanova et. al. “Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils” – AFM image of the Zn2+: GnRH [6-D-Phe] 10:1 complex. (a,b) Oligomers after preparation with tapping mode in Tris buffer solution (c,d) fibrils with tapping mode in air (z-scale indicates the average size of the formed oligomers and fibrils).

Yordanka Yordanova, Willem Vanderlinden, Raphael Stoll, Daniel Rüdiger, Andreas Tosstorff, Wolfgang Zaremba, Gerhard Winter, Stefan Zahler & Wolfgang Friess
Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils
Nature Scientific Reports volume 8, Article number: 11280 (2018)
doi: https://doi.org/10.1038/s41598-018-29529-w
Please follow this external link to read the full article on the  Nature website: https://rdcu.be/4y9J

Abstract: A synthetic derivative, GnRH [6-D-Phe], stable against enzymatic degradation, self-assembles and forms nanostructures and fibrils upon a pH shift in the presence of different concentrations of Zn2+ in vitro. Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR–FTIR) revealed the existence of higher order assembly of Zn2+: GnRH [6-D-Phe]. Nuclear Magnetic Resonance spectroscopy (NMR) indicated a weak interaction between Zn2+ and GnRH [6-D-Phe]. Atomic Force Microscopy (AFM) showed the existence of GnRH [6-D-Phe] oligomers and fibrils. Molecular Dynamic (MD) simulation of the 10:1 Zn2+: GnRH [6-D-Phe] explored the interaction and dimerization processes. In contrast to already existing short peptide fibrils, GnRH [6-D-Phe] nanostructures and fibrils form in a Tris-buffered pH environment in a controlled manner through a temperature reduction and a pH shift. The lyophilized Zn2+: GnRH [6-D-Phe] assembly was tested as a platform for the sustained delivery of GnRH [6-D-Phe] and incorporated into two different oil vehicle matrices. The in vitro release was slow and continuous over 14 days and not influenced by the oil matrix.

The article “Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils” by Yordanova Y. et al. is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

NANOSENSORS this week at 2017 MRS Fall Exhibit

Visit us at the NanoAndMore USA booth no. 610 at the 2017 MRS Fall Exhibit this week to learn more about three newly introduced Uniqprobe AFM probe types
qp-HBC
qp-fast
qp-BioAC-CI

#F17MRS #AFM #AFMtip #AFMprobe #atomicforcemicroscopy

NANOSENSORS AFM probes at the NanoAndMore USA booth no. 610 2017 MRS Fall Exhibit
NANOSENSORS at the NanoAndMore USA booth no. 610 2017 MRS Fall Exhibit

 

NANOSENSORS uniqprobe - reduced thermal drift AFM probes for biology and life-science applications
NANOSENSORS uniqprobe – reduced thermal drift for biology and life-science applications