Tag Archives: materials science

Insights into dynamic sliding contacts from conductive atomic force microscopy

Friction in nanoscale contacts is determined by the size and structure of the interface that is hidden between the contacting bodies. One approach to investigating the origins of friction is to measure electrical conductivity as a proxy for contact size and structure. However, the relationships between contact, friction and conductivity are not fully understood, limiting the usefulness of such measurements for interpreting dynamic sliding properties.*

In their study “Insights into dynamic sliding contacts from conductive atomic force microscopy” Nicholas Chan, Mohammad R. Vazirisereshk, Ashlie Martini and Philip Egberts used atomic force microscopy (AFM) to simultaneously acquire lattice resolution images of the lateral force and current flow through the tip–sample contact formed between a highly oriented pyrolytic graphite (HOPG) sample and a conductive diamond AFM probe to explore the underlying mechanisms and correlations between friction and conductivity. Both current and lateral force exhibited fluctuations corresponding to the periodicity of the HOPG lattice.

Unexpectedly, while lateral force increased during stick events of atomic stick-slip, the current decreased exponentially.*

The results presented in the study by Nicholas Chan et al. confirm that the correlation between conduction and atom–atom distance previously proposed for stationary contacts can be extended to sliding contacts in the stick-slip regime.*

A NANOSENSORS™ conductive diamond coated AFM probe CDT-CONTR was used to obtain all experimental data presented in their manuscript.*

Figure 1 (a) from “Insights into dynamic sliding contacts from conductive atomic force microscopy” by Nicholas Chan et al:
A schematic of the experimental setup is shown in Fig. 1(a). The experiment was conducted using an ultra-high vacuum (UHV) (RHK) AFM at room temperature at a pressure of <1109Torr. A doped diamond coated cantilever (NANOSENSORS CDT-CONTR) with a normal bending spring constant of 0.86 N m1and lateral spring constant of 10 N m1was used to obtain all experimental data presented in this manuscript.

Figure 1 (a) from “Insights into dynamic sliding contacts from conductive atomic force microscopy” by Nicholas Chan et al:
A schematic of the experimental setup is shown in Fig. 1(a). The experiment was conducted using an ultra-high vacuum (UHV)AFM at room temperature at a pressure of <1109Torr. A doped diamond coated cantilever (NANOSENSORS CDT-CONTR) with a normal bending spring constant of 0.86 N m1and lateral spring constant of 10 N m1was used to obtain all experimental data presented in this manuscript.

*Nicholas Chan, Mohammad R. Vazirisereshk, Ashlie Martini and Philip Egberts
Insights into dynamic sliding contacts from conductive atomic force microscopy
Nanoscale Advances., 2020, Advance Article
DOI: 10.1039/d0na00414f

Please follow this external link to read the whole article: https://pubs.rsc.org/en/content/articlepdf/2020/na/d0na00414f

Open Access: The article “Insights into dynamic sliding contacts from conductive atomic force microscopy” by Nicholas Chan, Mohammad R. Vazirisereshk, Ashlie Martini and Philip Egberts is licensed under a Creative Commons Attribution 3.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/.

Gentle plasma process for embedded silver-nanowire flexible transparent electrodes on temperature-sensitive polymer substrates

In the article “Gentle plasma process for embedded silver-nanowire flexible transparent electrodes on temperature-sensitive polymer substrates “ Lukas Kinner, Emil J W List-Kratochvil and Theodoros Dimopoulos investigate processing routes to obtain highly conductive and transparent electrodes of silver nanowires (AgNWs) on flexible polyethylene terephthalate (PET) substrate.*

Their study shows that both thermally stable polyimide, as well as temperature-sensitive PET can be used as flexible host substrates, combined with a gentle, AgNW plasma curing. This is possible by adjusting the fabrication sequence to accommodate the plasma curing step, depending on the host substrate. As a result, embedded AgNW electrodes, transferred from polyimide-to-PET and from PET-to-PET are obtained, with optical transmittance of ~80% (including the substrate) and sheet resistance of ~13 Ω/sq., similar to electrodes transferred from glass-to-glass substrates.*

The embedded AgNW electrodes on PET show superior performance in bending tests, as compared to indium-tin-oxide electrodes and can be easily combined with metal oxide films for device implementation. The introduced approach, involving low-cost flexible substrates, AgNW spray-coating and plasma curing, is compatible with high-throughput, roll-to-roll processing.*

The impact of the introduced processes concerns therefore applications where high-throughput production must be combined with sensitive, flexible substrates and ultra-thin device architectures, like OLEDs and organic- or perovskite-based photovoltaics.*

The sample surfaces were characterized with atomic force microscopy (AFM) in tapping mode, using high-resolution NANOSENSORS™ SuperSharpSilicon™ SSS-NCHR AFM probes.

Figure 5. from “Gentle plasma process for embedded silver-nanowire flexible transparent electrodes on temperature-sensitive polymer substrates “ by Lukas Kinner et al.: The sample surfaces were characterized with atomic force microscopy (AFM) in tapping mode, using high-resolution NANOSENSORS™ SuperSharpSilicon™ SSS-NCHR AFM probes.
AFM images of the AgNW electrodes for: (a) G2G SP, (b) G2G IP, (c) height profile for the dashed line marked in (b), (d) K2P SP, (e) P2P IP, (f) height profile for the dashed line marked in (e).
Figure 5. from “Gentle plasma process for embedded silver-nanowire flexible transparent electrodes on temperature-sensitive polymer substrates “ by Lukas Kinner et al.:
AFM images of the AgNW electrodes for: (a) G2G SP, (b) G2G IP, (c) height profile for the dashed line marked in (b), (d) K2P SP, (e) P2P IP, (f) height profile for the dashed line marked in (e).

*Lukas Kinner, Emil J W List-Kratochvil and Theodoros Dimopoulos
Gentle plasma process for embedded silver-nanowire flexible transparent electrodes on temperature-sensitive polymer substrates
Nanotechnology, Volume 31, Number 36 (2020)
DOI: https://doi.org/10.1088/1361-6528/ab97aa

Please follow this external link to read the full article: https://iopscience.iop.org/article/10.1088/1361-6528/ab97aa

Open Access: The article “Gentle plasma process for embedded silver-nanowire flexible transparent electrodes on temperature-sensitive polymer substrates” by Lukas Kinner, Emil J W List-Kratochvil and Theodoros Dimopoulos is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

From Polymer to Magnetic Porous Carbon Spheres: Combined Microscopy, Spectroscopy, and Porosity Studies

In their research paper “From Polymer to Magnetic Porous Carbon Spheres: Combined Microscopy, Spectroscopy, and Porosity Studies” Federico Cesano, Sara Cravanzola, Valentina Brunella, Alessandro Damin and Domenica Scarano, after having first reported the preparation of polymer waste-derived microporous carbon microspheres (SBET ~800 m2/g) 100–300 μm in size, investigate the morphology, porous texture and the surface properties of carbon and of magnetic carbon microspheres by multiple techniques.*

The multi-technique methodology they used aims at an extensive description of the different characteristics of activated carbons with magnetic properties.

For the Atomic Force Microscopy described in this paper NANOSENSORS™ SSS-MFMR AFM probes for high resolution magnetic force imaging were used for the topography images as well as the MFM imaging.

Figure 7 from “From Polymer to Magnetic Porous Carbon Spheres: Combined Microscopy, Spectroscopy, and Porosity Studies” by F. Cesano et al:
Three images described from left to right of Fe3O4-based carbon microspheres: first image on the left (a) AFM topography, middle image (b) the related phase signal, and the image on the right (c) MFM phase shift images at H = 60 nm lift height obtained in a second scan. The phase shift range in (c) is ~ 0.6 m°.
Figure 7 from “From Polymer to Magnetic Porous Carbon Spheres: Combined Microscopy, Spectroscopy, and Porosity Studies” by F. Cesano et al:
Fe3O4-based carbon microspheres: (a) AFM topography, (b) the related phase signal, and (c) MFM phase shift images at H = 60 nm lift height obtained in a second scan. The phase shift range in (c) is ~ 0.6 m°. e description

*Federico Cesano, Sara Cravanzola, Valentina Brunella, Alessandro Damin and Domenica Scarano
From Polymer to Magnetic Porous Carbon Spheres: Combined Microscopy, Spectroscopy, and Porosity Studies
Frontiers in Materials 6:84 (2019)
DOI: https://doi.org/10.3389/fmats.2019.00084

Please follow this external link to read the full research article: https://www.frontiersin.org/articles/10.3389/fmats.2019.00084/full

Open Access: The article « From Polymer to Magnetic Porous Carbon Spheres: Combined Microscopy, Spectroscopy, and Porosity Studies” by Federico Cesano, Sara Cravanzola, Valentina Brunella, Alessandro Damin and Domenica Scarano which is cited above is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.