Tag Archives: uniqprobe

Plant-Based Scaffolds Modify Cellular Response to Drug and Radiation Exposure Compared to Standard Cell Culture Models

Plant-based scaffolds present many advantages over a variety of biomaterials.*

Recent studies explored their potential to be repopulated with human cells and thus highlight a growing interest for their use in tissue engineering or for biomedical applications. However, it is still unclear if these in vitro plant-based scaffolds can modify cell phenotype or affect cellular response to external stimuli.

In the research article “Plant-Based Scaffolds Modify Cellular Response to Drug and Radiation Exposure Compared to Standard Cell Culture Models “ Jerome Lacombe, Ashlee F. Harris, Ryan Zenhausern, Sophia Karsunsky and Frederic Zenhausern report the characterization of the mechano-regulation of melanoma SK-MEL-28 and prostate PC3 cells seeded on decellularized spinach leaves scaffolds, compared to cells deposited on standard rigid cell culture substrate, as well as their response to drug and radiation treatment.*

In their study the authors show that plant decellularization provide soft scaffolds that match the stiffness range of most of the human tissue and modify cell behavior, including drug and radiation response, compared to standard cell culture models. Because of their distinguished features (natural vasculature, low immunogenicity, low cost, relative ease, etc.) and their wide variations in the shape and structures, these scaffolds offer a multi-controllable model with multiple biochemical and biophysical interactions. However, additional studies are required to determine if they could address important architectural and physical challenges of the in vivo tissue environment.

For force measurement, the Young’s Modulus (YM) of the leaf scaffolds were determined using force spectroscopy mode at liquid interface with NANOSENSORS uniqprobe qp-BioAC AFM probes for leaves measurement.*

NANOSENSORS uniqprobe qp-BioAC AFM probe top view (SEM image
NANOSENSORS uniqprobe qp-BioAC AFM probe top view (SEM image)

*Jerome Lacombe, Ashlee F. Harris, Ryan Zenhausern, Sophia Karsunsky and Frederic Zenhausern
Plant-Based Scaffolds Modify Cellular Response to Drug and Radiation Exposure Compared to Standard Cell Culture Models
Frontiers in Bioengineering and Biotechnology (2020) 8:932.
DOI: 10.3389/fbioe.2020.00932

Please follow this external link to read the full article: https://www.frontiersin.org/articles/10.3389/fbioe.2020.00932/full#B27

Open Access: The article “Plant-Based Scaffolds Modify Cellular Response to Drug and Radiation Exposure Compared to Standard Cell Culture Models” by Jerome Lacombe, Ashlee F. Harris, Ryan Zenhausern, Sophia Karsunsky and Frederic Zenhausern is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Soft, drift-reduced AFM cantilevers for Biology and Life Sciences – Uniqprobe Screencast passes the 1000 views mark

The screencast on the soft, drift-reduced NANOSENSORS™ uniqprobe cantilevers for biology and life science applications held by Dr. Laure Aeschimann has just passed the 1000 views mark. Congratulations Laure!

Since the first publication of this screencast that presents the uniqprobe types qp-BioAC, qp-BioT, qp-SCONT and qp-CONT , three further types of uniqprobe AFM probes have been introduced:

qp-BioAC-CI – a version of uniqprobe™ BioAC with Rounded Tips for Cell Imaging

qp-fast – three different uniqprobe™ cantilevers on one support chip for Soft- , Standard- , Fast Tapping/Dynamic AFM Imaging

and qp-HBC – the uniqprobe™ – HeartBeatCantilever that can also be used for ScanAsyst** and Peak Force Tapping** in Air.

To find out more please have a look at the NANOSENSORS™ uniqprobe brochure or the individual product pages on the NANOSENSORS webpage.

Additionally we have also put tipless versions of the qp-SCONT, qp-CONT and the qp-BioT ( SD-qp-BioT-TL, SD-qp-CONT-TL, SD-qp-SCONT-TL) and uniqprobe tipless cantilever arrays ( SD-qp-TL8a and SD-qp-TL8b ) on the NANOSENSORS special developments list.

Feel free to browse or let us know if you have any questions via info(at)nanosensors.com.

Product Screencast on the NANOSENSORS™ uniqprobe AFM Probes series with unsurpassed small variation in spring constant and resonance frequency by product developer Dr. Laure Aeschimann

A Japaneseversion of the screencast is also available :

バイオテクノロジー/ライフサイエンス向け NANOSENSORS ユニーク·プローブ Uniqprobe

A Chinese version of the Uniqprobe screencast is available on three different channels:

NANOSENSORS公司的吴烨娴博士在本视频中介绍了Uniqprobe原子力显微镜探针。Uniqprobe 探针 的悬臂梁厚度均一,并且有局部的金反射涂层。这两个特点使得这个探针在一些对弹性系数有精确要求的应用中, 表现出卓越的机械性能一致性 。该探针特别适用于分子生物学,生物物理学和定量纳米机械的研究.

The Chinese version is also available on Youku: http://v.youku.com/v_show/id_XNzA4MTgxNTI4.html
or weibo http://weibo.com/u/5077581192?is_all=1

** ScanAsyst® and PeakForce Tapping™ are trademarks of Bruker Corp.

Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences

Correlating data from different microscopy techniques holds the potential to discover new facets of signalling events in cellular biology.*

In the article “Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences” Ana I. Gómez-Varela, Dimitar R. Stamov, Adelaide Miranda, Rosana Alves, Cláudia Barata-Antunes, Daphné Dambournet, David G. Drubin, Sandra Paiva and Pieter A. A. De Beule report for the first time a hardware set-up capable of achieving simultaneous co-localized imaging of spatially correlated far-field super-resolution fluorescence microscopy and atomic force microscopy, a feat only obtained until now by fluorescence microscopy set-ups with spatial resolution restricted by the Abbe diffraction limit.*

The authors detail system integration and demonstrate system performance using sub-resolution fluorescent beads and applied to a test sample consisting of human bone osteosarcoma epithelial cells, with plasma membrane transporter 1 (MCT1) tagged with an enhanced green fluorescent protein (EGFP) at the N-terminal.*

The simultaneous operation of AFM and super-resolution fluorescence microscopy technique provides a powerful observational tool on the nanoscale, albeit data acquisition is typically obstructed by a series of integration problems. The authors of the above-mentioned article believe that the combination of SR-SIM with AFM presents one of the most promising schemes enabling simultaneous co-localized imaging, allowing the recording of nanomechanical data and cellular dynamics visualization at the same time.*

For measurements on cells in liquid NANOSENSORS™ uniqprobe qp-BioAC-CI AFM probes ( CB1 ) with a nominal resonance frequency of 90 kHz (in air), spring constant of 0.3 Nm−1, partial gold coating on the detector side, and quartz-like circular symmetric hyperbolic (double-concaved) tips with ROC of 30 nm were used. The corresponding AFM areas for the cell images were acquired with a Z-cantilever velocity of 250 μms−1 at a max Z-length of 1.5 μm, resulting in an acquisition time (based on the number of pixels) for Figs. 2, 3, 4 of ca. 13, 8 and 15 min respectively.*

Figure 4 a and b from Ana I. Gómez-Varela et al “Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences :  Simultaneous SR-SIM/AFM acquisition. The AFM measurements were carried out on fixed U2OS cells in medium/buffer with (a) and without N-SIM illumination (b). For convenience and enhanced feature/noise contrast, both AFM topography images in the SR-SIM/AFM overlays are displayed with an edge detection algorithm using a pixel difference operator in X. The topography images from Petri dish surface on three positions (labelled in the figures) were planefit (1st order polynomial function) to compensate for tilts in the sample surface, and subjected to surface roughness analysis Please have a look at the full article to view the full figure. https://rdcu.be/b4Iot
Figure 4 a and b from Ana I. Gómez-Varela et al “Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences : Simultaneous SR-SIM/AFM acquisition. The AFM measurements were carried out on fixed U2OS cells in medium/buffer with (a) and without N-SIM illumination (b). For convenience and enhanced feature/noise contrast, both AFM topography images in the SR-SIM/AFM overlays are displayed with an edge detection algorithm using a pixel difference operator in X. The topography images from Petri dish surface on three positions (labelled in the figures) were planefit (1st order polynomial function) to compensate for tilts in the sample surface, and subjected to surface roughness analysis. Please have a look at the full article to view the full figure. https://rdcu.be/b4Iot

*Ana I. Gómez-Varela, Dimitar R. Stamov, Adelaide Miranda, Rosana Alves, Cláudia Barata-Antunes, Daphné Dambournet, David G. Drubin, Sandra Paiva and Pieter A. A. De Beule
Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences
Nature Scientific Reports volume 10, Article number: 1122 (2020)
DOI: https://doi.org/10.1038/s41598-020-57885-z

Please follow this external link to read the full article https://rdcu.be/b4Iot

Open Access: The article “Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences” by Ana I. Gómez-Varela, Dimitar R. Stamov, Adelaide Miranda, Rosana Alves, Cláudia Barata-Antunes, Daphné Dambournet, David G. Drubin, Sandra Paiva and Pieter A. A. De Beule is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.