Tag Archives: uniqprobe

Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences

Correlating data from different microscopy techniques holds the potential to discover new facets of signalling events in cellular biology.*

In the article “Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences” Ana I. Gómez-Varela, Dimitar R. Stamov, Adelaide Miranda, Rosana Alves, Cláudia Barata-Antunes, Daphné Dambournet, David G. Drubin, Sandra Paiva and Pieter A. A. De Beule report for the first time a hardware set-up capable of achieving simultaneous co-localized imaging of spatially correlated far-field super-resolution fluorescence microscopy and atomic force microscopy, a feat only obtained until now by fluorescence microscopy set-ups with spatial resolution restricted by the Abbe diffraction limit.*

The authors detail system integration and demonstrate system performance using sub-resolution fluorescent beads and applied to a test sample consisting of human bone osteosarcoma epithelial cells, with plasma membrane transporter 1 (MCT1) tagged with an enhanced green fluorescent protein (EGFP) at the N-terminal.*

The simultaneous operation of AFM and super-resolution fluorescence microscopy technique provides a powerful observational tool on the nanoscale, albeit data acquisition is typically obstructed by a series of integration problems. The authors of the above-mentioned article believe that the combination of SR-SIM with AFM presents one of the most promising schemes enabling simultaneous co-localized imaging, allowing the recording of nanomechanical data and cellular dynamics visualization at the same time.*

For measurements on cells in liquid NANOSENSORS™ uniqprobe qp-BioAC-CI AFM probes ( CB1 ) with a nominal resonance frequency of 90 kHz (in air), spring constant of 0.3 Nm−1, partial gold coating on the detector side, and quartz-like circular symmetric hyperbolic (double-concaved) tips with ROC of 30 nm were used. The corresponding AFM areas for the cell images were acquired with a Z-cantilever velocity of 250 μms−1 at a max Z-length of 1.5 μm, resulting in an acquisition time (based on the number of pixels) for Figs. 2, 3, 4 of ca. 13, 8 and 15 min respectively.*

Figure 4 a and b from Ana I. Gómez-Varela et al “Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences :  Simultaneous SR-SIM/AFM acquisition. The AFM measurements were carried out on fixed U2OS cells in medium/buffer with (a) and without N-SIM illumination (b). For convenience and enhanced feature/noise contrast, both AFM topography images in the SR-SIM/AFM overlays are displayed with an edge detection algorithm using a pixel difference operator in X. The topography images from Petri dish surface on three positions (labelled in the figures) were planefit (1st order polynomial function) to compensate for tilts in the sample surface, and subjected to surface roughness analysis Please have a look at the full article to view the full figure. https://rdcu.be/b4Iot
Figure 4 a and b from Ana I. Gómez-Varela et al “Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences : Simultaneous SR-SIM/AFM acquisition. The AFM measurements were carried out on fixed U2OS cells in medium/buffer with (a) and without N-SIM illumination (b). For convenience and enhanced feature/noise contrast, both AFM topography images in the SR-SIM/AFM overlays are displayed with an edge detection algorithm using a pixel difference operator in X. The topography images from Petri dish surface on three positions (labelled in the figures) were planefit (1st order polynomial function) to compensate for tilts in the sample surface, and subjected to surface roughness analysis. Please have a look at the full article to view the full figure. https://rdcu.be/b4Iot

*Ana I. Gómez-Varela, Dimitar R. Stamov, Adelaide Miranda, Rosana Alves, Cláudia Barata-Antunes, Daphné Dambournet, David G. Drubin, Sandra Paiva and Pieter A. A. De Beule
Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences
Nature Scientific Reports volume 10, Article number: 1122 (2020)
DOI: https://doi.org/10.1038/s41598-020-57885-z

Please follow this external link to read the full article https://rdcu.be/b4Iot

Open Access: The article “Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences” by Ana I. Gómez-Varela, Dimitar R. Stamov, Adelaide Miranda, Rosana Alves, Cláudia Barata-Antunes, Daphné Dambournet, David G. Drubin, Sandra Paiva and Pieter A. A. De Beule is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. Elegans

Genetic and environmental factors are key drivers regulating organismal lifespan but how these impact healthspan is less well understood. Techniques capturing biomechanical properties of tissues on a nano-scale level are providing new insights into disease mechanisms.*

In the article “ Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. Elegans “ Clara L. Essmann, Daniel Martinez-Martinez, Rosina Pryor, Kit-Yi Leung, Kalaivani Bala Krishnan, Prudence Pokway Lui, Nicholas D.E. Greene, André E.X. Brown, Vijay M. Pawar, Mandayam A. Srinivasan and Filipe Cabreiro apply Atomic Force Microscopy (AFM) to quantitatively measure the change in biomechanical properties associated with ageing Caenorhabditis elegans in addition to capturing high-resolution topographical images of cuticle senescence.*

The authors show that distinct dietary restriction regimes and genetic pathways that increase lifespan lead to radically different healthspan outcomes. Hence, their data support the view that prolonged lifespan does not always coincide with extended healthspan. Importantly, they identify the insulin signalling pathway in C. elegans and interventions altering bacterial physiology as increasing both lifespan and healthspan.*

Overall, AFM provides a highly sensitive technique to measure organismal biomechanical fitness and delivers an approach to screen for health-improving conditions, an essential step towards healthy ageing.*

The topographical images shown in this article were acquired using NANOSENSORS™ uniqprobe qp-CONT AFM probes. These AFM probes have very soft cantilevers designed for imaging of biological samples ( k = 0.1 N/m ).

Figure 1 f) from” Mechanical properties measured by atomic force microscopy define health biomarkersin ageing C. Elegans “ by Clara L. Essmann et al, please follow this external link for the full figure: https://www.nature.com/articles/s41467-020-14785-0/figures/1
f Representative AFM cuticle topography images of ageing C. elegans at different ages.

*Clara L. Essmann, Daniel Martinez-Martinez, Rosina Pryor, Kit-Yi Leung, Kalaivani Bala Krishnan, Prudence Pokway Lui, Nicholas D.E. Greene, André E.X. Brown, Vijay M. Pawar, Mandayam A. Srinivasan, Filipe Cabreiro
Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. Elegans
Nature Communications (2020) 11:1043
DOI: https://doi.org/10.1038/s41467-020-14785

Please follow this external link to read the full article: https://rdcu.be/b3zbL

Open Access: The article “Mechanical properties measured by atomic force microscopy define health biomarkersin ageing C. Elegans” by Clara L. Essmann, Daniel Martinez-Martinez, Rosina Pryor, Kit-Yi Leung, Kalaivani Bala Krishnan, Prudence Pokway Lui, Nicholas D.E. Greene, André E.X. Brown, Vijay M. Pawar, Mandayam A. Srinivasan, Filipe Cabreiro is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Nucleation in confinement generates long-range repulsion between rough calcite surfaces

Fluid-induced alteration of rocks and mineral-based materials often starts at confined mineral interfaces where nm-thick water films can persist even at high overburden pressures and at low vapor pressures. These films enable transport of reactants and affect forces acting between mineral surfaces. However, the feedback between the surface forces and reactivity of confined solids is not fully understood.*

In “Nucleation in confinement generates long-range repulsion between rough calcite surfaces» Joanna Dziadkowiec, Bahareh Zareeipolgardani, Dag Kristian Dysthe and Anja Røyne describe how they used the surface forces apparatus (SFA) to follow surface reactivity in confinement and measure nm-range forces between two rough calcite surfaces in NaCl, CaCl2, or MgCl2 solutions with ionic strength of 0.01, 0.1 or 1 M.*

Roughness evolution with time of single, unconfined calcite films in salt solutions was analyzed by Atomic Force Microscopy using NANOSENSORS™ uniqprobe qp-SCONT AFM probes to image the surfaces in contact mode.*

 Supplementary Information S8. showing the Atomic Force Microscopy (AFM)ALD films roughness characterization from «Nucleation in confinement generates long-range repulsion between rough calcite surfaces” by Joanna Dziadkowiec et al.:
 Figure S7 show the AFM height maps (A, B, E, F, G, J) and histograms of surface heights (C, D, H, I) of the initial set 1 (A-E) and set 2 (F-J) ALD calcite surfaces for two scan sizes of 15x15 μm2(A, C, F, H)and 2x2 μm2(B, D, E, G, I, J). The images E and J show 3D height maps of the B, G height maps, respectively

Supplementary Information S8. Atomic Force Microscopy (AFM)ALD films roughness characterization from «Nucleation in confinement generates long-range repulsion between rough calcite surfaces” by Joanna Dziadkowiec et al.:
Figure S7.AFM height maps (A, B, E, F, G, J) and histograms of surface heights (C, D, H, I) of the initial set 1 (A-E) and set 2 (F-J) ALD calcite surfaces for two scan sizes of 15×15 μm2(A, C, F, H)and 2×2 μm2(B, D, E, G, I, J). The images E and J show 3D height maps of the B, G height maps, respectively

*Joanna Dziadkowiec, Bahareh Zareeipolgardani, Dag Kristian Dysthe and Anja Røyne
Nucleation in confinement generates long-range repulsion between rough calcite surfaces
Nature, Scientific Reports, volume 9, Article number: 8948 (2019)
doi: https://doi.org/10.1038/s41598-019-45163-6

Please follow this external link for the full article: https://rdcu.be/bMhZb

Open Access: The article “Nucleation in confinement generates long-range repulsion between rough calcite surfaces” by Joanna Dziadkowiec, Bahareh Zareeipolgardani, Dag Kristian Dysthe and Anja Røyne is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/