Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

Iron disulfide ( FeS2 ) is a natural earth-abundant and nontoxic material with possible applications in lithium batteries, transistors or photovoltaic (PV) devices. According to the analysis carried out by Wadia et al., among 23 semiconducting materials, FeS2 is the best candidate for the development of large-scale solar cells at low cost (<2 × 10−6 ¢/W). Furthermore, FeS2 exhibits excellent optoelectronic properties such as a band gap of 0.8 to 1.38 eV, a high optical absorption coefficient (2 × 105 cm−1), high carrier mobility (2 to 80 cm2/Vs) and a large charge carrier lifetime (200 ps). Therefore, FeS2 nanoparticles (NPs) can be a good alternative for PV applications.*

In “Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells “ Olivia Amargós-Reyes, José-Luis Maldonado, Omar Martínez-Alvarez, María-Elena Nicho, José Santos-Cruz, Juan Nicasio-Collazo, Irving Caballero-Quintana and Concepción Arenas-Arrocena report the synthesis of nontoxic pyrite iron sulfide ( FeS2 ) nanocrystals (NCs) using a two-pot method. Moreover, they study the influence of these NCs incorporated into the PTB7:PC71BM active layer of bulk-heterojunction ternary organic photovoltaic ( OPV ) cells.*

The AFM roughness images presented in this article were acquired in dynamic force mode using NANOSENSORS™ PointProbe® Plus PPP-NCLAu AFM probes.

Figure 7 from “Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells” shows the 2D (left) and 3D (right) AFM images of the OPVs with different concentrations of FeS2 recorded in the noncontact mode. The roughness of the OPV surface is increased gradually as the FeS2 concentration increases (Table 1 and Figure 7), such that traps for the charge carriers could occur and the leakage current could increase. Because of the FeS2 agglomerates, the OPV parameters tend to decrease, free charges cannot be efficiently extracted. This effect is most prominent for the OPV cells with 1% of FeS2 (Figure 7 and Supporting Information File 1, Figure S2d).
Figure 7 from “Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells” by Olivia Amargós-Reyes et al.:
2D (left) and 3D (right) AFM images of the OPVs with different concentrations of FeS2
(a) 0.0 wt %, b) 0.25 wt %, c) 0.5 wt % and d) 1.0 wt %) recorded in noncontact mode.

*Olivia Amargós-Reyes, José-Luis Maldonado, Omar Martínez-Alvarez, María-Elena Nicho, José Santos-Cruz, Juan Nicasio-Collazo, Irving Caballero-Quintana and Concepción Arenas-Arrocena
Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells
Beilstein Journal of . Nanotechnology 2019, 10, 2238–2250.
DOI: doi:10.3762/bjnano.10.216

Please follow this external link to read the full article: https://www.beilstein-journals.org/bjnano/articles/10/216#R65

Open Access: The article “Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells” by Olivia Amargós-Reyes, José-Luis Maldonado, Omar Martínez-Alvarez, María-Elena Nicho, José Santos-Cruz, Juan Nicasio-Collazo, Irving Caballero-Quintana and Concepción Arenas-Arrocena is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. Elegans

Genetic and environmental factors are key drivers regulating organismal lifespan but how these impact healthspan is less well understood. Techniques capturing biomechanical properties of tissues on a nano-scale level are providing new insights into disease mechanisms.*

In the article “ Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. Elegans “ Clara L. Essmann, Daniel Martinez-Martinez, Rosina Pryor, Kit-Yi Leung, Kalaivani Bala Krishnan, Prudence Pokway Lui, Nicholas D.E. Greene, André E.X. Brown, Vijay M. Pawar, Mandayam A. Srinivasan and Filipe Cabreiro apply Atomic Force Microscopy (AFM) to quantitatively measure the change in biomechanical properties associated with ageing Caenorhabditis elegans in addition to capturing high-resolution topographical images of cuticle senescence.*

The authors show that distinct dietary restriction regimes and genetic pathways that increase lifespan lead to radically different healthspan outcomes. Hence, their data support the view that prolonged lifespan does not always coincide with extended healthspan. Importantly, they identify the insulin signalling pathway in C. elegans and interventions altering bacterial physiology as increasing both lifespan and healthspan.*

Overall, AFM provides a highly sensitive technique to measure organismal biomechanical fitness and delivers an approach to screen for health-improving conditions, an essential step towards healthy ageing.*

The topographical images shown in this article were acquired using NANOSENSORS™ uniqprobe qp-CONT AFM probes. These AFM probes have very soft cantilevers designed for imaging of biological samples ( k = 0.1 N/m ).

Figure 1 f) from” Mechanical properties measured by atomic force microscopy define health biomarkersin ageing C. Elegans “ by Clara L. Essmann et al, please follow this external link for the full figure: https://www.nature.com/articles/s41467-020-14785-0/figures/1
f Representative AFM cuticle topography images of ageing C. elegans at different ages.

*Clara L. Essmann, Daniel Martinez-Martinez, Rosina Pryor, Kit-Yi Leung, Kalaivani Bala Krishnan, Prudence Pokway Lui, Nicholas D.E. Greene, André E.X. Brown, Vijay M. Pawar, Mandayam A. Srinivasan, Filipe Cabreiro
Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. Elegans
Nature Communications (2020) 11:1043
DOI: https://doi.org/10.1038/s41467-020-14785

Please follow this external link to read the full article: https://rdcu.be/b3zbL

Open Access: The article “Mechanical properties measured by atomic force microscopy define health biomarkersin ageing C. Elegans” by Clara L. Essmann, Daniel Martinez-Martinez, Rosina Pryor, Kit-Yi Leung, Kalaivani Bala Krishnan, Prudence Pokway Lui, Nicholas D.E. Greene, André E.X. Brown, Vijay M. Pawar, Mandayam A. Srinivasan, Filipe Cabreiro is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.