Tag Archives: MFM探针

NANOSENSORS AFM probes for Magnetic Force Microscopy

Did you know that NANOSENSORS offers six different types of AFM probes for Magnetic Force Microscopy ( MFM) for scanning and investigating sample surfaces with magnetic features?

PPP-MFMR – AFM tip with hard magnetic coating, sensitivity, resolution and coercivity designed for standard magnetic force microscopy applications

PPP-LM-MFMR – designed for magnetic force microscopy with reduced disturbance of the magnetic sample by the MFM tip and enhanced lateral resolution

PPP-LC-MFMR –  MFM tip with soft magnetic coating designed for the measurement of magnetic domains in soft magnetic samples

PPP-QLC-MFMR –  low coercivity MFM probe designed for high operation stability and low disturbance of magnetic samples under ultrahigh vacuum ( UHV ) conditions

SSS-MFMR – SuperSharp MFM probe for high resolution magnetic force imaging, low magnetic moment for reduced disturbance of soft magnetic samples

SSS-QMFMR – SuperSharp MFM probe for high resolution magnetic force imaging with a high mechanical Q-factor for applications in ultrahigh vacuum ( UHV ) .

The screencast introducing all these different MFM probes, their properties and their applications held by our Head of R&D Thomas Sulzbach has just passed the 1500 views mark. Congratulations Thomas!

NANOSENSORS AFM tips for Magnetic Force Microscopy

For further details please have a look at the NANOSENSORS MFM probes brochure.

Application examples for NANOSENSORS AFM probes for Magnetic Force Microscopy can be found in the NANOSENSORS blog.

NANOSENSORS screencasts on Magnetic Force Microscopy AFM probes are also available in

Chinese

on youku http://v.youku.com/v_show/id_XNzMyMDg2MjQ4.html

and Youtube

and

Japanese

On the magnetic nanostructure of a Co–Cu alloy processed by high-pressure torsion

Lately the production of nanocrystalline magnetic materials starting with coarse grained materials (top-down approach) has received increasing interest.*

The advantage of the top-down approach compared to the bottom-up approach ( e.g. using melt spinning, stacking of sheets, annealing treatments and other processing steps) is that rare-earth elements and additional processing steps such as stacking of sheets are not necessary.*

In the article “On the magnetic nanostructure of a Co–Cu alloy processed by high-pressure torsion” Martin Stückler, Christian Teichert, Aleksandar Matković, Heinz Krenn, Lukas Weissitsch, Stefan Wurster, Reinhard Pippan, Andrea Bachmaier present a preparation route of Co–Cu alloys with soft magnetic properties by high-pressure torsion deformation. Nanocrystalline, supersaturated single-phase microstructures are obtained after deformation of Co–Cu alloys, which are prepared from an initial powder mixture with Co-contents above 70 wt.%.*

The authors used NANOSENSORS SSS-MFMR magnetic AFM probes optimized for high resolution magnetic force imaging in the quantitative analysis of the magnetic microstructure by magnetic force microscopy to understand the measured magnetic properties and correlated this to the detected changes in coercivity.

The achieved results by Martin Stückler et al. show that the rising coercivity can be explained by a magnetic hardening effect occurring in context with spinodal decomposition.*

Fig. 6 from “On the magnetic nanostructure of a Co–Cu alloy processed by high-pressure torsion” by Martin Stückler et al.:
2 μm × 2 μm AFM scans of (a) as-deformed state and (c) 300 °C annealed state. The corresponding MFM scans of the as-deformed and 300 °C annealed state are shown in (b) and (d) respectively. The axial direction of the HPT specimen points out of the plane, the shear direction is in horizontal direction. The lateral scale bar in (a) applies to all scans. The minimum height and phase signal values are shifted to zero for visualization purposes.
NANOSENSORS SSS-MFMR magnetic AFM probes optimized for high resolution magnetic force microscopy were used
Fig. 6 from “On the magnetic nanostructure of a Co–Cu alloy processed by high-pressure torsion” by Martin Stückler et al.:
2 μm × 2 μm AFM scans of (a) as-deformed state and (c) 300 °C annealed state. The corresponding MFM scans of the as-deformed and 300 °C annealed state are shown in (b) and (d) respectively. The axial direction of the HPT specimen points out of the plane, the shear direction is in horizontal direction. The lateral scale bar in (a) applies to all scans. The minimum height and phase signal values are shifted to zero for visualization purposes.

*Martin Stückler, Christian Teichert, Aleksandar Matković, Heinz Krenn, Lukas Weissitsch, Stefan Wurster, Reinhard Pippan, Andrea Bachmaier
On the magnetic nanostructure of a Co–Cu alloy processed by high-pressure torsion
Journal of Science: Advanced Materials and Devices, Volume 6, Issue 1, March 2021, Pages 33-41
DOI: https://doi.org/10.1016/j.jsamd.2020.09.013

Please follow this external link to read the full article: https://www.sciencedirect.com/science/article/pii/S2468217920300873?via%3Dihub

Open Access The article “On the magnetic nanostructure of a Co–Cu alloy processed by high-pressure torsion” by Martin Stückler, Christian Teichert, Aleksandar Matković, Heinz Krenn, Lukas Weissitsch, Stefan Wurster, Reinhard Pippan, Andrea Bachmaier is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure

Electrical manipulation of skyrmions attracts considerable attention for its rich physics and promising applications. To date, such a manipulation is realized mainly via spin-polarized current based on spin-transfer torque or spin–orbital torque effect.*

However, this scheme is energy consuming and may produce massive Joule heating. To reduce energy dissipation and risk of heightened temperatures of skyrmion-based devices, an effective solution is to use electric field instead of current as stimulus.*

In the article “Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure”, Yadong Wang, Lei Wang, Jing Xia, Zhengxun Lai, Guo Tian, Xichao Zhang, Zhipeng Hou, Xingsen Gao, Wenbo Mi, Chun Feng, Min Zeng, Guofu Zhou, Guanghua Yu, Guangheng Wu, Yan Zhou, Wenhong Wang, Xi-xiang Zhang and Junming Liu realize an electric-field manipulation of skyrmions in a nanostructured ferromagnetic/ferroelectrical heterostructure at room temperature via an inverse magneto-mechanical effect.*

Intriguingly, such a manipulation is non-volatile and exhibits a multistate feature. Numerical simulations indicate that the electric-field manipulation of skyrmions originates from strain-mediated modification of effective magnetic anisotropy and Dzyaloshinskii–Moriya interaction.*

The results presented in the article open a direction for constructing low-energy-dissipation, non-volatile, and multistate skyrmion-based spintronic devices.*

To minimize the influence of the magnetic field from the MFM tip on the magnetic domain structure during the magnetic force microscopy ( MFM ) measurements, NANOSENSORS™ PPP-LM-MFMR low moment magnetic AFM probes were used.*

These MFM probes are designed for magnetic force microscopy with reduced disturbance of the magnetic sample by the tip and enhanced lateral resolution compared to the standard PPP-MFMR probe. The distance between the tip and sample was maintained at a constant distance of 30 nm.*

Figure 2 from “Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure” by Yadong Wang et al.:
Electric-field-induced switching of individual skyrmion.
The transferred average strain εave and corresponding magnetic domain evolution processes in the d ~ 350 nm a [Pt/Co/Ta]12 and b [Pt/Co/Ta]8 nano-dots in a cycle of E ranging from +10 to −10 kV cm−1. Positive εave (red dots) represents tensile strain while negative εave (blue dots) represents compressive strain. μ0H represents the external magnetic field except that from the MFM tip and here μ0H is equal to be 0 mT. The inset of b illustrates the spin texture of the magnetic domain that is encompassed by the red box. The stripe domain enclosed by the black box shows the initial state of the magnetic domain evolution path. The gray dots represent the corresponding electric field for the MFM images. The MFM contrast represents the MFM tip resonant frequency shift (Δf). The scale bar represents 250 nm.

NANOSENSORS™ PPP-LM-MFMR low moment magnetic AFM probes were used
Figure 2 from “Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure” by Yadong Wang et al.:
Electric-field-induced switching of individual skyrmion.
The transferred average strain εave and corresponding magnetic domain evolution processes in the d ~ 350 nm a [Pt/Co/Ta]12 and b [Pt/Co/Ta]8 nano-dots in a cycle of E ranging from +10 to −10 kV cm−1. Positive εave (red dots) represents tensile strain while negative εave (blue dots) represents compressive strain. μ0H represents the external magnetic field except that from the MFM tip and here μ0H is equal to be 0 mT. The inset of b illustrates the spin texture of the magnetic domain that is encompassed by the red box. The stripe domain enclosed by the black box shows the initial state of the magnetic domain evolution path. The gray dots represent the corresponding electric field for the MFM images. The MFM contrast represents the MFM tip resonant frequency shift (Δf). The scale bar represents 250 nm.

*Yadong Wang, Lei Wang, Jing Xia, Zhengxun Lai, Guo Tian, Xichao Zhang, Zhipeng Hou, Xingsen Gao, Wenbo Mi, Chun Feng, Min Zeng, Guofu Zhou, Guanghua Yu, Guangheng Wu, Yan Zhou, Wenhong Wang, Xi-xiang Zhang and Junming Liu
Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure
Nature Communications volume 11, Article no. 3577 (2020)
DOI: https://doi.org/10.1038/s41467-020-17354-7

Please follow this external link to read the full article: https://rdcu.be/b6qpr

Open Access: The article “Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure” by Yadong Wang, Lei Wang, Jing Xia, Zhengxun Lai, Guo Tian, Xichao Zhang, Zhipeng Hou, Xingsen Gao, Wenbo Mi, Chun Feng, Min Zeng, Guofu Zhou, Guanghua Yu, Guangheng Wu, Yan Zhou, Wenhong Wang, Xi-xiang Zhang and Junming Liu is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.