Tag Archives: NANOSENSORS™ Platinum Silicide

Efficient long-range conduction in cable bacteria through nickel protein wires

Bio-materials typically have an intrinsically low electrical conductivity, and so the availability of a bio-material with extraordinary electrical properties has great potential for new applications in bio-electronics. This prospect of technological application however requires a deeper understanding of the mechanism of electron transport as well as the structure and composition of the conductive fibers in cable bacteria.*

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved.*

In their article “Efficient long-range conduction in cable bacteria through nickel protein wires”  Henricus T. S. Boschker, Perran L. M. Cook, Lubos Polerecky, Raghavendran Thiruvallur Eachambadi, Helena Lozano, Silvia Hidalgo-Martinez, Dmitry Khalenkow, Valentina Spampinato, Nathalie Claes, Paromita Kundu, Da Wang, Sara Bals, Karina K. Sand, Francesca Cavezza, Tom Hauffman, Jesper Tataru Bjerg, Andre G. Skirtach, Kamila Kochan, Merrilyn McKee, Bayden Wood, Diana Bedolla, Alessandra Gianoncelli, Nicole M. J. Geerlings, Nani Van Gerven, Han Remaut, Jeanine S. Geelhoed, Ruben Millan-Solsona, Laura Fumagalli, Lars Peter Nielsen, Alexis Franquet, Jean V. Manca, Gabriel Gomila and Filip J. R. Meysman combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer.*

The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.*

NANOSENSORS wear-resistant conductive Platinum Silicide AFM probes of the PtSi-CONT type were used for the Scanning dielectric microscopy (SDM) described in the article.

Figure 5 from Henricus T. S. Boschker et al. “Efficient long-range conduction in cable bacteria through nickel protein wires” A Compositional model of the conductive fiber sheath in cable bacteria based on the present findings. Cross-sections through a filament in the middle of a cell are drawn and the number of fibers has been reduced for clarity—a 4 μm diameter cable bacterium has typically ~60 fibers5. In its native state (right panel), the fiber sheath is embedded periplasm between the cell and outer membrane and adopts a circular shape. After extraction, which removes the membranes and most of the cytoplasm and after drying upon a surface for analysis, the fiber sheath flattens, leading to two mirrored sheaths on top of each other (middle panel). The enlargement shows a section of the top sheath, which is the sample section probed by ToF-SIMS depth profiles and NanoSIMS images. Fibers are made of protein with a conductive Ni/S rich core and a non-conductive outer shell, and are embedded in a basal layer enriched in polysaccharide. B Topographic AFM image of a fiber sheath with a single isolated fiber detaching. The insert shows a detailed AFM image of this single fiber. C SDM amplitude image (right insert) and cross-sectional profile. D Corresponding SDM phase image (insert) and cross-sectional profile. Constant height (z = 66 nm) cross-section profiles are measured along the dashed lines shown in the left inserts. The red dotted lines in C and D represent model fits assuming the a fiber has a conductive core and an insulating outer shell. The right insert in C shows a vertical cross-section of the electric potential distribution as predicted by the model. Model parameters: shell thickness, d = 12 nm; fiber height, h = 42 nm; fiber width w = 87 nm; relative dielectric constants of the shell and core, εs = ω εc = 3; conductivity of the shell σs = 0 S/cm (insulating); conductivity of the core σc = 20 S/cm7 (see Supplementary Note 2 for treatment of SDM results and models tested). SDM analysis on a single fiber is available only from one samples as this is a rare event, but results from a double fiber and fiber sheaths are in agreement (see Supplementary Note 2). NANOSENSORS wear-resistant conductive Platinum Silicide AFM probes of the PtSi-CONT type were used for the Scanning dielectric microscopy (SDM).
Figure 5 from Henricus T. S. Boschker et al. “Efficient long-range conduction in cable bacteria through nickel protein wires”
A Compositional model of the conductive fiber sheath in cable bacteria based on the present findings. Cross-sections through a filament in the middle of a cell are drawn and the number of fibers has been reduced for clarity—a 4 μm diameter cable bacterium has typically ~60 fibers5. In its native state (right panel), the fiber sheath is embedded periplasm between the cell and outer membrane and adopts a circular shape. After extraction, which removes the membranes and most of the cytoplasm and after drying upon a surface for analysis, the fiber sheath flattens, leading to two mirrored sheaths on top of each other (middle panel). The enlargement shows a section of the top sheath, which is the sample section probed by ToF-SIMS depth profiles and NanoSIMS images. Fibers are made of protein with a conductive Ni/S rich core and a non-conductive outer shell, and are embedded in a basal layer enriched in polysaccharide. B Topographic AFM image of a fiber sheath with a single isolated fiber detaching. The insert shows a detailed AFM image of this single fiber. C SDM amplitude image (right insert) and cross-sectional profile. D Corresponding SDM phase image (insert) and cross-sectional profile. Constant height (z = 66 nm) cross-section profiles are measured along the dashed lines shown in the left inserts. The red dotted lines in C and D represent model fits assuming the a fiber has a conductive core and an insulating outer shell. The right insert in C shows a vertical cross-section of the electric potential distribution as predicted by the model. Model parameters: shell thickness, d = 12 nm; fiber height, h = 42 nm; fiber width w = 87 nm; relative dielectric constants of the shell and core, εs = ω εc = 3; conductivity of the shell σs = 0 S/cm (insulating); conductivity of the core σc = 20 S/cm7 (see Supplementary Note 2 for treatment of SDM results and models tested). SDM analysis on a single fiber is available only from one samples as this is a rare event, but results from a double fiber and fiber sheaths are in agreement (see Supplementary Note 2).

*Henricus T. S. Boschker, Perran L. M. Cook, Lubos Polerecky, Raghavendran Thiruvallur Eachambadi, Helena Lozano, Silvia Hidalgo-Martinez, Dmitry Khalenkow, Valentina Spampinato, Nathalie Claes, Paromita Kundu, Da Wang, Sara Bals, Karina K. Sand, Francesca Cavezza, Tom Hauffman, Jesper Tataru Bjerg, Andre G. Skirtach, Kamila Kochan, Merrilyn McKee, Bayden Wood, Diana Bedolla, Alessandra Gianoncelli, Nicole M. J. Geerlings, Nani Van Gerven, Han Remaut, Jeanine S. Geelhoed, Ruben Millan-Solsona, Laura Fumagalli, Lars Peter Nielsen, Alexis Franquet, Jean V. Manca, Gabriel Gomila and Filip J. R. Meysman
Efficient long-range conduction in cable bacteria through nickel protein wires
Nature Communications volume 12, Article number: 3996 (2021)
DOI: https://doi.org/10.1038/s41467-021-24312-4

Please follow this external link to read the full article:

https://rdcu.be/cP0I1

Open Access: The article “Efficient long-range conduction in cable bacteria through nickel protein wires” by Henricus T. S. Boschker, Perran L. M. Cook, Lubos Polerecky, Raghavendran Thiruvallur Eachambadi, Helena Lozano, Silvia Hidalgo-Martinez, Dmitry Khalenkow, Valentina Spampinato, Nathalie Claes, Paromita Kundu, Da Wang, Sara Bals, Karina K. Sand, Francesca Cavezza, Tom Hauffman, Jesper Tataru Bjerg, Andre G. Skirtach, Kamila Kochan, Merrilyn McKee, Bayden Wood, Diana Bedolla, Alessandra Gianoncelli, Nicole M. J. Geerlings, Nani Van Gerven, Han Remaut, Jeanine S. Geelhoed, Ruben Millan-Solsona, Laura Fumagalli, Lars Peter Nielsen, Alexis Franquet, Jean V. Manca, Gabriel Gomila & Filip J. R. Meysman is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

Controlling the work function of transition metal oxides is of key importance with regard to future energy production and storage. As the majority of applications involve the use of heterostructures, the most suitable characterization technique is Kelvin probe force microscopy (KPFM), which provides excellent energetic and lateral resolution.*

In their study “Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation» Dominik Wrana, Karol Cieślik, Wojciech Belza, Christian Rodenbücher, Krzysztof Szot and Franciszek Krok present the advantages and limitations of the FM-KPFM technique using the example of a newly discovered TiO/SrTiO3(100) (metal/insulator) heterostructure, which has potentially high technological relevance.*

In the same article a combined conductivity and work function study from the same surface area is presented, showing the possibility of obtaining full information on the electronic properties when the KPFM technique is accompanied by local conductivity atomic force microscopy (LC-AFM).*

The authos present the measurement of the crystalline TiO work function and its dependence on the gaseous pressure of air using Kelvin probe force microscopy.

In order to ensure reproducible FM-KPFM results, two different types of AFM cantilevers were used: NANOSENSORS™ PointProbe® Plus PPP-ContPt (PtIr-coated) and NANOSENSORS™ Platinum Silicide PtSi-FM.*

Such cantilevers are widely used as conducting tips in a contact mode AFM, allowing for a high lateral resolution in conductivity measurements. The remarkable mechanical stability of the selected cantilevers allowed for the noncontact mode measurements (with a Kelvin loop) using the very same tip, maintaining oscillations at the higher harmonics of the fundamental frequency (≈75 kHz). Hence, in order to record current and CPD maps from the very same sample area, KPFM measurements were first performed with the soft cantilever forced to oscillate at higher harmonics, then the tip was retracted tens of nanometers from the surface, all feedback loops were turned down and a contact mode AFM scan was performed when approached with a single loop maintaining a deflection set point of 10–30 mV. The high conductivity of both TiO and STO materials enabled a low sample bias of +1 mV for the LC-AFM measurements to be used.*

Figure 4 from “Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation”: KPFM lateral resolution on high TiO/STO structures. a) Topography and b) work function of TiO nanowire array on SrTiO3(100). c) Height (black line) and work function (green line) profiles of two adjacent TiO nanowires, showing high KPFM contrast. d) Dependence of the CPD resolution (estimated as ΔCPD/CPD, see c) on the separation between TiO nanowires, with A + B/X asymptote fit. Insets show the SEM images of the actual PtSi cantilever used in the experiments with a tip radius of 15 nm.

*Dominik Wrana, Karol Cieślik, Wojciech Belza, Christian Rodenbücher, Krzysztof Szot, Franciszek Krok
Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation
Beilstein Journal of Nanotechnology 2019, 10, 1596–1607
DOI: 10.3762/bjnano.10.155

Please follow this external link to read the full article: https://www.beilstein-journals.org/bjnano/articles/10/155

Open Access The article “Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation” by Dominik Wrana, Karol Cieślik, Wojciech Belza, Christian Rodenbücher, Krzysztof Szot and Franciszek Krok is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Conductive-probe atomic force microscopy and Kelvin-probe force microscopy characterization of OH-terminated diamond (111) surfaces with step-terrace structures

Diamond has a high breakdown field, high carrier mobilities and the highest thermal conductivity. That is why diamond is a promising material for next generation high-power devices such as field effect transistors.*

In their paper “Conductive-probe atomic force microscopy and Kelvin-probe force microscopy characterization of OH-terminated diamond (111) surfaces with step-terrace structures”, Masatsugu Nagai, Ryo Yoshida, Tatsuki Yamada, Taira Tabakoya, Christoph E. Nebel, Satoshi Yamasaki, Toshiharu Makino, Tsubasa Matsumoto, Takao Inokuma and Norio Tokuda report about a detailed characterization of OH-terminated diamond (111) surfaces with step-terrace (ST) and bunching-step (BS) regions. In order to obtain the OH-terminated diamond (111) surfaces, they combined three techniques: anisotropic diamond etching by thermochemical reaction between Ni and diamond in high-temperature water vapor, hydrogen plasma treatment24) and water vapor annealing.
For characterization of the topography as well as electronic surface properties, atomic force microscopy (AFM), Kelvin-probe force microscopy (KPFM) and conductive-prove AFM (CPAFM) were applied.*

They found that the contact potential difference (CPD) and current were highly correlated with the surface topography and concluded that the interface states were generated around steps on the OH-terminated diamond (111) surfaces.*

The results presented in this paper indicate that atomically flat diamond surfaces with minimal step densities are required to form ideal MOS structures with minimized interface state densities.*

The CPD maps of the OH-terminated diamond (111) surfaces were obtained by the KPFM measurements, using NANOSENSORS™ Platinum Silicide ( PtSi ) AFM probes. *

 Fig. 2 from “Conductive-probe atomic force microscopy and Kelvin-probe force microscopy characterization of OH-terminated diamond (111) surfaces with step-terrace structures” by Masatsugu Nagai et al.:
 (Color online) (a) The topographic image and CPD map of the OH-terminated diamond (111) surface with ST and BS regions. (b) the cross sectional image and CPD profile corresponding to the line A-A' in the Fig. 2(a).

Fig. 2 from “Conductive-probe atomic force microscopy and Kelvin-probe force microscopy characterization of OH-terminated diamond (111) surfaces with step-terrace structures” by Masatsugu Nagai et al.:
(Color online) (a) The topographic image and CPD map of the OH-terminated diamond (111) surface with ST and BS regions. (b) the cross sectional image and CPD profile corresponding to the line A-A’ in the Fig. 2(a).

*Masatsugu Nagai, Ryo Yoshida, Tatsuki Yamada, Taira Tabakoya, Christoph E. Nebel, Satoshi Yamasaki, Toshiharu Makino, Tsubasa Matsumoto, Takao Inokuma and Norio Tokuda
Conductive-probe atomic force microscopy and Kelvin-probe force microscopy characterization of OH-terminated diamond (111) surfaces with step-terrace structures
Japanese Journal of Applied Physics, 2019, Volume 58, Number SIIB08
DOI: https://doi.org/10.7567/1347-4065/ab1b5c

Please follow this external link for the full article: https://iopscience.iop.org/article/10.7567/1347-4065/ab1b5c

Open Access: The article “Conductive-probe atomic force microscopy and Kelvin-probe force microscopy characterization of OH-terminated diamond (111) surfaces with step-terrace structures” by Masatsugu Nagai, Ryo Yoshida, Tatsuki Yamada, Taira Tabakoya, Christoph E. Nebel, Satoshi Yamasaki, Toshiharu Makino, Tsubasa Matsumoto, Takao Inokuma and Norio Tokuda is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/