Skip to content

Model of a graphite electrode

Interface analysis between a model for the graphite electrode and solvent for electrolytes of lithium-ion batteries. An example of the interface observation between highly oriented pyrolytic graphite (HOPG) as a model for graphite electrodes and tetraglyme, which has been studied as a solvent of electrolytes for lithium ion batteries. The AFM cantilever oscillation frequency and amplitude during the experiments were 92 kHz and 0.3 nm, respectively. The temperature was maintained at 298 K under an argon atmosphere throughout the experiment to prevent the dissolution of contaminants from the air, which could affect the interface structure. The topographic image revealed an ordered structure at Δf = 1000 Hz, obtained with tetraglyme adsorbed on an HOPG surface.

Model for the graphite electrode Interface analysis between a model for the graphite electrode and solvent for electrolytes of lithium-ion batteries. An example of the interface observation between highly oriented pyrolytic graphite (HOPG) as a model for graphite electrodes and tetraglyme, which has been studied as a solvent of electrolytes for lithium ion batteries. The AFM cantilever oscillation frequency and amplitude during the experiments were 92 kHz and 0.3 nm, respectively. The temperature was maintained at 298 K under an argon atmosphere throughout the experiment to prevent the dissolution of contaminants from the air, which could affect the interface structure. The topographic image revealed an ordered structure at Δf = 1000 Hz, obtained with tetraglyme adsorbed on an HOPG surface. Scanned with a NANOSENSORS PPP-NCHAuD AFM probe in a Shimadzu SPM-8000FM AFM system in FM mode. Image courtesy of Dr. Taketoshi Minato, Institute for Molecular Science, National Institutes of Natural Sciences

Model for the graphite electrode
Interface analysis between a model for the graphite electrode and solvent for electrolytes of lithium-ion batteries. An example of the interface observation between highly oriented pyrolytic graphite (HOPG) as a model for graphite electrodes and tetraglyme, which has been studied as a solvent of electrolytes for lithium ion batteries.

Scanned with a NANOSENSORS PointProbe® Plus PPP-NCHAuD AFM probe in FM mode. The image has also been shared in the NanoAndMore AFM image gallery.

Image courtesy of Dr. Taketoshi Minato, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan