Tag Archives: ATEC

Direct Measurement of Adhesion Force of Individual Aerosol Particles by Atomic Force Microscopy

In the article «Direct Measurement of Adhesion Force of Individual Aerosol Particles by Atomic Force Microscopy» Kohei Ono, Yuki Mizushima, Masaki Furuya, Ryota Kunihisa, Nozomu Tsuchiya, Takeshi Fukuma, Ayumi Iwata and Atsushi Matsuki describe a new method, namely, force–distance curve mapping, that was developed to directly measure the adhesion force of individual aerosol particles by atomic force microscopy.*

The proposed method collects adhesion force from multiple points on a single particle. It also takes into account the spatial distribution of the adhesion force affected by topography (e.g., the variation in the tip angle relative to the surface, as well as the force imposed upon contact), thereby enabling the direct and quantitative measurement of the adhesion force representing each particle.*

The results presented in the article highlight that the original chemical composition, as well as the aging process in the atmosphere, can create significant variation in the adhesion force among individual particles. This study demonstrates that force–distance curve mapping can be used as a new tool to quantitatively characterize the physical properties of aerosol particles on an individual basis.*

The measurement of adhesion force described in the article was performed in contact mode using silicon NANOSENSORS™ AdvancedTEC™ ATEC-CONT AFM tips.*

Figure 2 from «Direct Measurement of Adhesion Force of Individual Aerosol Particles by Atomic Force Microscopy» by Kohei Ono et al:
Atomic force microscopy (AFM) mag image (a), slope mapping (b), and adhesion force mapping (c) obtained from the same 1 μm PSL particle. Representative force–distance curves are shown for the point at which the tip is properly in contact with the surface with sufficient stroke (loading force), at the proper angle (d) and for the point further towards the edge where the tip is barely touching the surface at a steep angle (e). The black lines in panels (d) and (e) show the baseline in which the tip did not touch the particle or substrate. A plot of the relationship between the slope and the adhesion force is shown in panel (f). The plots in the shaded area are considered to represent the adhesion force of the particle.
Figure 2 from «Direct Measurement of Adhesion Force of Individual Aerosol Particles by Atomic Force Microscopy» byKohei Ono et al:
Atomic force microscopy (AFM) mag image (a), slope mapping (b), and adhesion force mapping (c) obtained from the same 1 μm PSL particle. Representative force–distance curves are shown for the point at which the tip is properly in contact with the surface with sufficient stroke (loading force), at the proper angle (d) and for the point further towards the edge where the tip is barely touching the surface at a steep angle (e). The black lines in panels (d) and (e) show the baseline in which the tip did not touch the particle or substrate. A plot of the relationship between the slope and the adhesion force is shown in panel (f). The plots in the shaded area are considered to represent the adhesion force of the particle.

*Kohei Ono, Yuki Mizushima, Masaki Furuya, Ryota Kunihisa, Nozomu Tsuchiya,Takeshi Fukuma, Ayumi Iwata and Atsushi Matsuki
Direct Measurement of Adhesion Force of Individual Aerosol Particles by Atomic Force Microscopy
Atmosphere 2020, 11(5), 489
DOI: https://doi.org/10.3390/atmos11050489

Please follow this external link to read the full article: https://www.mdpi.com/2073-4433/11/5/489/htm

Open Access: The article “Direct Measurement of Adhesion Force of Individual Aerosol Particles by Atomic Force Microscopy” by Kohei Ono, Yuki Mizushima, Masaki Furuya, Ryota Kunihisa, Nozomu Tsuchiya,Takeshi Fukuma, Ayumi Iwata and Atsushi Matsuki is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

On-chip integration of single solid-state quantum emitters with a SiO2 photonic platform

One important building block for future integrated nanophotonic devices is the scalable on-chip interfacing of single photon emitters and quantum memories with single optical modes.*

In the article “On-chip integration of single solid-state quantum emitters with a SiO2 photonic platform” Florian Böhm, Niko Nikolay, Christoph Pyrlik, Jan Schlegel, Andreas Thies, Andreas Wicht,Günther Tränkle and Oliver Benson present the deterministic integration of a single solid-state qubit, the nitrogen-vacancy (NV) center, with a photonic platform consisting exclusively of SiO2grown thermally on a Si substrate.*
The platform stands out by its ultra-low fluorescence and the ability to produce various passive structures such as high-Q micro resonators and mode-size converters. By numerical analysis an optimal structure for the efficient coupling of a dipole emitter to the guided mode could be determined. Experimentally, the integration of a preselected NV emitter was performed with an atomic force microscope and the on-chip excitation of the quantum emitter as well as the coupling of single photons to the guided mode of the integrated structure could be demonstrated. The authors approach shows the potential of this platform as a robust nanoscale interface of on-chip photonic structures with solid-state qubits.*

After optically verifying the successful placement of the nanodiamond hosting a single nitrogen-vacancy ( NV ) center by performing a confocal scan, the article describes how the nanoparticle is pushed to the inner edge of the rib waveguide in a subsequent step, using a NANOSENSORS™ AdvancedTEC™ ATEC-NC tip-view AFM probe.*


Figure 1 a from: “On-chip integration of single solid-state quantum emitters with aSiO2photonic platform” by Florian Böhm et al:
Waveguide design and functionalization
(a) Illustration of the SiO2waveguide structure and the field profile(E2∣∣)of the guided TM fundamental optical mode at 700 nm. Also the deterministic positioning process of the diamond-nanocrystal containing a single NV center (the NV crystal structure is shown in the inset) into the inner edge of the integrated SiO2rib waveguide with an atomic force microscope (AFM) tip, is shown.

*Florian Böhm, Niko Nikolay, Christoph Pyrlik, Jan Schlegel, Andreas Thies, Andreas Wicht,Günther Tränkle and Oliver Benson
On-chip integration of single solid-state quantum emitters with a SiO2 photonic platform
New Journal of Physics 21 (2019 ) 045007
DOI: https://iopscience.iop.org/article/10.1088/1367-2630/ab1144

Please follow this external link to read the full article: https://iopscience.iop.org/article/10.1088/1367-2630/ab1144/pdf

Open Access: The article “On-chip integration of single solid-state quantum emitters with a SiO2 photonic platform” by Florian Böhm, Niko Nikolay, Christoph Pyrlik, Jan Schlegel, Andreas Thies, Andreas Wicht, Günther Tränkle and Oliver Benson is licensed under a Creative Commons Attribution 3.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/.

Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide coupled plasmonic transducers

In their article “Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide coupled plasmonic transducers” Lauren M. Otto, D. Frank Ogletree, Shaul Aloni, Matteo Staffaroni, Barry C. Stipe and Aeron T. Hammack describe how visualizations of the near-field modes in the region of a plasmonic device were created using scattering scanning near-field optical microscopy and scanning electron microscopy cathodoluminescence with both showing a strong correspondence to multiphysical numerical modeling of the devices under interrogation.

The sSNOM measurements shown in this article were performed with NANOSENSORS™ AdvancedTEC™ ATEC-NC tip-view AFM probes.

Figure 3 from «Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide coupled plasmonic transducers» by Lauren M. Otto et al.:
Scattering scanning near-field optical microscopy images of HAMR heads as a function of wavelength and polarization. Near-field maps for the 1ω0 and 6ω0 with both (a) 830 nm and (b) 633 nm wavelengths as well as polarizations ranging from −90° deg (perp, TE) to 0° (para TM) to +90° (perp, TE). All maps are 400 nm × 400 nm. The intensity maxima from all maps were extracted and plotted against the expected cos2(θ) intensity decay curve for both (c) 830 nm light and (d) 633 nm light. The full data set ranged from −100° to 100° in increments of 10° and covered six harmonics for both wavelengths. The AFM color scale ranges from −3.8 to +1.6 nm, and the map is 400 nm × 400 nm. Additional images can be found in the Supporting Information in the online version of the original article.

Lauren M. Otto, D. Frank Ogletree, Shaul Aloni, Matteo Staffaroni, Barry C. Stipe and Aeron T. Hammack
Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide coupled plasmonic transducers
Nature Scientific Reports volume 8, Article number: 5761 (2018)
DOI: https://doi.org/10.1038/s41598-018-24061-3

Please follow this external link to read the full article: https://rdcu.be/bU4co

Open Access: The article “Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide coupled plasmonic transducers” by Lauren M. Otto, D. Frank Ogletree, Shaul Aloni, Matteo Staffaroni, Barry C. Stipe and Aeron T. Hammack which is cited above is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.