Tag Archives: biomaterials

Supercritical carbon dioxide decellularization of plant material to generate 3D biocompatible scaffolds

Biocompatible scaffolds that can be repopulated with human cells have many uses such serving as replacement organs and tissues. Therefore there is an increasing interest in plant-based biomaterials for tissue engineering.*

As the above mentioned scaffolds should mimic the in vivo tissue environment closely they need to provide a fitting structural and biomechanical support to the cells while at the same time promoting cell behaviour and tissue development. *

Currently the standard method to prepare plant tissue to serve as a biocompatible scaffold is to decellularize it with serial chemical treatment.*

In their article “Supercritical carbon dioxide decellularization of plant material to generate 3D biocompatible scaffolds” Ashlee F. Harris, Jerome Lacombe, Sumedha Liyanage, Margaret Y. Han, Emily Wallace, Sophia Karsunky, Noureddine Abidi and Frederic Zenhausern explore another method to produce biocompatible scaffolds.*

They use supercritical carbon dioxide (scCO2) together with 2% peracetic acid to decellularize plant material.*

Their subsequent investigations show that the process of decellularization, scaffold structure preservation and recellularization with human cells is less time consuming than with the standard chemical method.

In a further step the authors of the article describe how they use various scientific methods to evaluate the scaffolds they decellularized by the described scCO2 method.*

Ashlee F. Harris et al. use Atomic Force Microscopy (AFM) in order to find out if the scCO2 treatment had an impact on the mechanical properties of the scaffolds produced with this method.*

With AFM topography measurements they are able to establish that structures such as plant vasculature were preserved.*

The following determination of the Young’s Modulus calculated from multiple force curves of a homogeneous surface section of the produced scaffold shows it to be slightly lower than the one from a chemically decellularized scaffold.*

NANOSENSORS™ uniqprobe qp-BioAC AFM probes ( CB3 nominal values: 80 μm length, 30 μm mean width, 400 nm thickness, force constant 0.06 N/m, resonance frequency 30 kHz) were used for the scaffold measurements with Atomic Force Microscopy.

Figure 3 from “Supercritical carbon dioxide decellularization of plant material to generate 3D biocompatible scaffolds AFM imaging and spectrometry measurement” by Ashlee F. Harris et al.: 
They used AFM surface topography measurements to confirm that the structures such as plant vasculature were preserved after the scSO2 process and used  AFM force curves to calculate the  Young’s Modulus (YM) of the scCO2 decellularized scaffold. NANOSENSORS uniqprobe qp-BioAC AFM probes were used for the described AFM measurments. 
(a) Representative false colored three-dimensional surface mapping images and (b) Young’s modulus of scCO2 and chemically decellularized scaffolds (data as mean ± SEM; n = 5).
Figure 3 from “Supercritical carbon dioxide decellularization of plant material to generate 3D biocompatible scaffolds AFM imaging and spectrometry measurement” by Ashlee F. Harris et al.: (a) Representative false colored three-dimensional surface mapping images and (b) Young’s modulus of scCO2 and chemically decellularized scaffolds (data as mean ± SEM; n = 5).

While the scCo2 method promises to be a faster way to decellularize plant material and produce sterile and biocompatible scaffolds further research will be necessary to determine whether the differences the authors detected between the scaffolds produced with the scCO2 approach and the scaffolds produced with the chemical approach have a major influence on how repopulated cells behave in the achieved scaffolds.*

*Ashlee F. Harris, Jerome Lacombe, Sumedha Liyanage, Margaret Y. Han, Emily Wallace, Sophia Karsunky, Noureddine Abidi and Frederic Zenhausern
Supercritical carbon dioxide decellularization of plant material to generate 3D biocompatible scaffolds
Nature Scientific Reports 11, 3643 (2021)
DOI: https://doi.org/10.1038/s41598-021-83250-9

Please follow this external link to read the full article: https://rdcu.be/cAqW3

Open Access The article “Supercritical carbon dioxide decellularization of plant material to generate 3D biocompatible scaffolds” by Ashlee F. Harris, Jerome Lacombe, Sumedha Liyanage, Margaret Y. Han, Emily Wallace, Sophia Karsunky, Noureddine Abidi and Frederic Zenhausern is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Plant-Based Scaffolds Modify Cellular Response to Drug and Radiation Exposure Compared to Standard Cell Culture Models

Plant-based scaffolds present many advantages over a variety of biomaterials.*

Recent studies explored their potential to be repopulated with human cells and thus highlight a growing interest for their use in tissue engineering or for biomedical applications. However, it is still unclear if these in vitro plant-based scaffolds can modify cell phenotype or affect cellular response to external stimuli.

In the research article “Plant-Based Scaffolds Modify Cellular Response to Drug and Radiation Exposure Compared to Standard Cell Culture Models “ Jerome Lacombe, Ashlee F. Harris, Ryan Zenhausern, Sophia Karsunsky and Frederic Zenhausern report the characterization of the mechano-regulation of melanoma SK-MEL-28 and prostate PC3 cells seeded on decellularized spinach leaves scaffolds, compared to cells deposited on standard rigid cell culture substrate, as well as their response to drug and radiation treatment.*

In their study the authors show that plant decellularization provide soft scaffolds that match the stiffness range of most of the human tissue and modify cell behavior, including drug and radiation response, compared to standard cell culture models. Because of their distinguished features (natural vasculature, low immunogenicity, low cost, relative ease, etc.) and their wide variations in the shape and structures, these scaffolds offer a multi-controllable model with multiple biochemical and biophysical interactions. However, additional studies are required to determine if they could address important architectural and physical challenges of the in vivo tissue environment.

For force measurement, the Young’s Modulus (YM) of the leaf scaffolds were determined using force spectroscopy mode at liquid interface with NANOSENSORS uniqprobe qp-BioAC AFM probes for leaves measurement.*

NANOSENSORS uniqprobe qp-BioAC AFM probe top view (SEM image
NANOSENSORS uniqprobe qp-BioAC AFM probe top view (SEM image)

*Jerome Lacombe, Ashlee F. Harris, Ryan Zenhausern, Sophia Karsunsky and Frederic Zenhausern
Plant-Based Scaffolds Modify Cellular Response to Drug and Radiation Exposure Compared to Standard Cell Culture Models
Frontiers in Bioengineering and Biotechnology (2020) 8:932.
DOI: 10.3389/fbioe.2020.00932

Please follow this external link to read the full article: https://www.frontiersin.org/articles/10.3389/fbioe.2020.00932/full#B27

Open Access: The article “Plant-Based Scaffolds Modify Cellular Response to Drug and Radiation Exposure Compared to Standard Cell Culture Models” by Jerome Lacombe, Ashlee F. Harris, Ryan Zenhausern, Sophia Karsunsky and Frederic Zenhausern is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation

Bone is the second most commonly transplanted tissue, preceded only by blood transfusion.Within this context, it is imperative to achieve the functional and structural restoration of damaged bone tissue. A major difficulty in bone tissue engineering arises from the fact that the bone regeneration process requires a long time for achieving a completely functional tissue. Generally, cells are seeded ex vivo into a three-dimensional (3D) biocompatible and sometimes biodegradable structure called scaffold, where they attach and grow. After the implantation into the injured site, the scaffolds should allow proper host cell colonization for regeneration purposes.*

Magnetic scaffolds emerged as promising solution for this purpose. Activation of the magnetic scaffolds using external static magnetic fields (SMF) prevents the decrease of bone mineral density and promotes the bone regeneration in bone fractures. The significant alterations in cell behaviors stimulated by the externally applied magnetic fields has been demonstrated in numerous studies. For example, it has been shown that an externally applied SMF using a magnet accelerates the osteogenic differentiation of osteoblasts-like cells in vitro and triggers peri-implant bone formation in vivo.*

The magnetism can also be used through scaffolding materials with magnetic properties. For example, biomaterials that incorporate magnetic nanoparticles (MNPs) are being developed.*

In the article «3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation” Irina Alexandra Paun, Bogdan Stefanita Calin, Cosmin Catalin Mustaciosu, Mona Mihailescu, Antoniu Moldovan, Ovidiu Crisan, Aurel Leca and Catalin Romeo Luculescu report on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures.*

To prove the magnetic nature of the MNPs in the polymerized composites, magnetic force microscopy (MFM) was carried out on scaffolds with different MNPs concentrations. NANOSENSORS™ PointProbe® Plus PPP-MFMR AFM probes with magnetic coating were used.*

Figure 5 from “3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation” by Irina Alexandra Paun et al:
Topographical (upper panel) and magnetic force microscopy (lower panel) images of scaffolds with MNPs concentrations of: (a,d) 0 mg/mL; (b,e) 2 mg/mL; (c,f) 4 mg/mL.

*Irina Alexandra Paun, Bogdan Stefanita Calin, Cosmin Catalin Mustaciosu, Mona Mihailescu, Antoniu Moldovan, Ovidiu Crisan, Aurel Leca and Catalin Romeo Luculescu
3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation
Materials 2019, 12(17), 2834
DOI: https://doi.org/10.3390/ma12172834

Please follow this link to read the full article: https://www.mdpi.com/1996-1944/12/17/2834/htm

Open Access The article “3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation” by Irina Alexandra Paun, Bogdan Stefanita Calin, Cosmin Catalin Mustaciosu, Mona Mihailescu, Antoniu Moldovan, Ovidiu Crisan, Aurel Leca and Catalin Romeo Luculescu is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.