PPP-ZEILR

Cantilever data:
Property Nominal Value Specified Range
Resonance Frequency [kHz] 27 19 - 35
Force Constant [N/m] 1.6 0.6 - 3.9
Length [µm] 450 440 - 460
Mean Width [µm] 55 47.5 - 62.5
Thickness [µm] 4 3 - 5
Order codes and shipping units:
Order Code AFM probes per pack Data sheet
PPP-ZEILR-10 10 of all probes
PPP-ZEILR-20 20 of all probes
PPP-ZEILR-50 50
PPP-ZEILR-W 380 of up to 32 probes
NANOSENSORS™ PointProbe® Plus AFM Probes

PointProbe® Plus ZEISS Veritekt Microscopes - Contact Mode Low Force Constant - Reflex Coating

The PointProbe® Plus (PPP) combines high application versatility and compatibility with most commercial SPMs. The typical AFM tip radius of less than 7 nm and the minimized variation in AFM tip shape provide reproducible images and enhanced resolution.

For owners of a Zeiss Veritekt or Seiko Instruments microscope using contact mode we recommend NANOSENSORS™ PPP-ZEILR (Zeiss Veritekt / low force constant). Compared to the contact mode AFM probe (CONT) the force constant is slightly increased.

The AFM probe offers unique features:

  • guaranteed AFM tip radius of curvature < 10 nm
  • AFM tip height 10 - 15 µm
  • highly doped silicon to dissipate static charge
  • Al coating on detector side of AFM cantilever
  • high mechanical Q-factor for high sensitivity

The reflective coating is an approximately 30 nm thick aluminium coating on the detector side of the AFM cantilever which enhances the reflectivity of the laser beam by a factor of about 2.5. Furthermore it prevents light from interfering within the AFM cantilever. As the coating is nearly stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

This AFM probe features alignment grooves on the back side of the holder chip. These grooves fit to the NANOSENSORS Alignment Chip.

Khan MS, Kassem E, Aston DE, Sirin O, McDonald A
Impact of aging on the microstructure of asphalt binder modified with antioxidant additives and copolymers
International Journal of Pavement Research and Technology. 2025 Mar;18(2):1-8
DOI: https://doi.org/10.1007/s42947-023-00347-2


Wellmann J, Brinkmann JP, Wankmiller B, Neuhaus K, Rodehorst U, Hansen MR, Winter M, Paillard E
Effective solid electrolyte interphase formation on lithium metal anodes by mechanochemical modification
ACS applied materials & interfaces. 2021 Jul 15;13(29):34227-37
DOI: https://doi.org/10.1021/acsami.1c07490


Yao A, Kobayashi K, Nosaka S, Kimura K, Yamada H
Visualization of Au nanoparticles buried in a polymer matrix by scanning thermal noise microscopy
Scientific reports. 2017 Feb 17;7(1):42718
DOI: https://doi.org/10.1038/srep42718


Shirasu K, Tamaki I, Miyazaki T, Yamamoto G, Bekarevich R, Hirahara K, Shimamura Y, Inoue Y, Hashida T
Key factors limiting carbon nanotube strength: Structural characterization and mechanical properties of multi-walled carbon nanotubes
Mechanical Engineering Journal. 2017;4(5):17-00029
DOI: https://doi.org/10.1299/mej.17-00029


Kimura K, Kobayashi K, Yao A, Yamada H
Visualization of subsurface nanoparticles in a polymer matrix using resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy
Nanotechnology. 2016 Sep 8;27(41):415707.
DOI: https://doi.org/10.1088/0957-4484/27/41/415707


Zhou W, Yamamoto G, Fan Y, Kwon H, Hashida T, Kawasaki A
In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites
Carbon. 2016 Sep 1;106:37-47
DOI: https://doi.org/10.1016/j.carbon.2016.05.015


Yamamoto G, Shirasu K, Nozaka Y, Sato Y, Takagi T, Hashida T
Structure–property relationships in thermally-annealed multi-walled carbon nanotubes
Carbon. 2014 Jan 1;66:219-26
DOI: https://doi.org/10.1016/j.carbon.2013.08.061


Nozaka Y, Wang W, Shirasu K, Yamamoto G, Hashida T
Inclined slit-based pullout method for determining interfacial strength of multi-walled carbon nanotube–alumina composites.
Carbon. 2014 Nov 1;78:439-45
DOI: https://doi.org/10.1016/j.carbon.2014.07.024


Yamamoto G, Hashida T
Carbon nanotube reinforced alumina composite materials
InComposites and Their Properties 2012 Aug 22. IntechOpen
DOI: https://doi.org/10.5772/48667


Yamamoto G, Shirasu K, Hashida T, Takagi T, Suk JW, An J, Piner RD, Ruoff RS
Nanotube fracture during the failure of carbon nanotube/alumina composites
Carbon. 2011 Oct 1;49(12):3709-16
DOI: https://doi.org/10.1016/j.carbon.2011.04.022


Ptak A, Makowski M, Cichomski M
Characterization of nanoscale adhesion between a fluoroalkyl silane monolayer and a silicon AFM tip. Complex character of the interaction potential.
Chemical Physics Letters. 2010 Apr 1;489(1-3):54-8
DOI: https://doi.org/10.1016/j.cplett.2010.02.043