PPP-NCR

Cantilever data:
Property Nominal Value Specified Range
Resonance Frequency [kHz] 300 200 - 400
Force Constant [N/m] 26 10 - 58
Length [µm] 125 115 - 135
Mean Width [µm] 29 21.5 - 36.5
Thickness [µm] 3.5 2.5 - 4.5
Order codes and shipping units:
Order Code AFM probes per pack Data sheet
PPP-NCR-10 10 of all probes
PPP-NCR-20 20 of all probes
PPP-NCR-50 50
PPP-NCR-W 380 of up to 32 probes

PointProbe® Plus Non-Contact / Tapping Mode - Reflex Coating

The PointProbe® Plus (PPP) combines high application versatility and compatibility with most commercial SPMs. The typical AFM tip radius of less than 7 nm and the minimized variation in AFM tip shape provide reproducible images and enhanced resolution.

NANOSENSORS™ PPP-NCR AFM probes are especially designed with the same mechanical properties as the Olympus** AC160 AFM probe for non-contact mode or tapping mode AFM (also known as: attractive or dynamic mode).This AFM probe combines high operation stability with outstanding sensitivity.

This AFM probe offers unique features:

  • same typical frequency and force constant range as Olympus** AC160
  • excellent tip radius of curvature
  • highly doped silicon to dissipate static charge
  • Al coating on detector side of AFM cantilever
  • high mechanical Q-factor for high sensitivity

The reflective coating is an approximately 30 nm thick aluminum coating on the detector side of the AFM cantilever which enhances the reflectivity of the laser beam by a factor of about 2.5. Furthermore it prevents light from interfering within the AFM cantilever. As the coating is nearly stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

This AFM probe features alignment grooves on the back side of the holder chip. These grooves fit to the NANOSENSORS Alignment Chip.

Devaraj V, Alvarado IA, Lee JM, Oh JW, Gerstmann U, Schmidt WG, Zentgraf T
Self-assembly of isolated plasmonic dimers with sub-5 nm gaps on a metallic mirror
Nanoscale Horizons. 2025;10(3):537-48
DOI: http://dx.doi.org/10.1039/D4NH00546E


Pastore T, Trevisi G, Casoli F, Savio L, Di Maro M, Gautier di Confiengo G, Faga MG, Costa D, Poncini M, Faverzani D
Surface Properties of Aminopropylsilsesquioxane Coatings for Glass Vials
SSRN 5266090
DOI: http://dx.doi.org/10.2139/ssrn.5266090


Shu H, Khlyustova A, Park KW, Stafslien S, Kang G, Chen P, Shindler S, Yang R
Fluorine‐Free Amphiphilic Copolymers for Broad‐Spectrum Marine Biofouling Deterrence
Advanced Functional Materials. 2025 Apr 17:2502065
DOI: https://doi.org/10.1002/adfm.202502065


Burton HE, Cullinan R, Jiang K, Espino DM
Multiscale three-dimensional surface reconstruction and surface roughness of porcine left anterior descending coronary arteries
Royal Society Open Science. 2019 Sep 11;6(9):190915
DOI: https://doi.org/10.1098/rsos.190915


Zhu C, Zhou L, Choi M, Baker LA
Mapping surface charge of individual microdomains with scanning ion conductance microscopy
ChemElectroChem. 2018 Oct 12;5(20):2986-90
DOI: https://doi.org/10.1002/celc.201800724


Freund S, Hinaut A, Marinakis N, Constable EC, Meyer E, Housecroft CE, Glatzel T
Anchoring of a dye precursor on NiO (001) studied by non-contact atomic force microscopy
Beilstein journal of nanotechnology. 2018 Jan 23;9(1):242-9
DOI: https://doi.org/10.3762/bjnano.9.26


Freund S, Pawlak R, Moser L, Hinaut A, Steiner R, Marinakis N, Constable EC, Meyer E, Housecroft CE, Glatzel T
Transoid-to-cisoid conformation changes of single molecules on surfaces triggered by metal coordination
ACS omega. 2018 Oct 9;3(10):12851-6
DOI: https://doi.org/10.1021/acsomega.8b01792


Uhlig T, Wiedwald U, Seidenstücker A, Ziemann P, Eng LM
Single core–shell nanoparticle probes for non-invasive magnetic force microscopy
Nanotechnology. 2014 Jun 4;25(25):255501
DOI: https://doi.org/10.1088/0957-4484/25/25/255501


Soylemez E, de Boer MP, Sae-Ueng U, Evilevitch A, Stewart TA, Nyman M
Photocatalytic degradation of bacteriophages evidenced by atomic force microscopy
PLoS One. 2013 Jan 3;8(1):e53601
DOI: https://doi.org/10.1371/journal.pone.0053601