PPP-NCSTAuD

Cantilever data:
Property Nominal Value Specified Range
Resonance Frequency [kHz] 160 75 - 265
Force Constant [N/m] 7.4 1.2 - 29
Length [µm] 150 140 - 160
Mean Width [µm] 27 19.5 - 34.5
Thickness [µm] 2.8 1.8 - 3.8
Order codes and shipping units:
Order Code AFM probes per pack Data sheet
PPP-NCSTAuD-10 10 of all probes
NANOSENSORS™ PointProbe® Plus AFM Probes

PointProbe® Plus Non-Contact / Soft Tapping Mode - Au Coating (Detector side)

The PointProbe® Plus (PPP) combines high application versatility and compatibility with most commercial SPMs. The typical AFM tip radius of less than 7 nm and the minimized variation in AFM tip shape provide reproducible images and enhanced resolution.

NANOSENSORS™ PPP-NCSTAuD AFM probes are designed for non-contact or soft tapping mode imaging. The combination of soft AFM cantilever and fairly high resonance frequency enables stable and fast measurements with reduced AFM tip-sample interaction. This feature significantly reduces AFM tip wear and sample wear at the same time.

The AFM probe offers unique features:

  • guaranteed AFM tip radius of curvature < 10 nm
  • AFM tip height 10 - 15 µm
  • highly doped silicon to dissipate static charge
  • Au coating on detector side of AFM cantilever
  • chemically inert

A metallic layer (Au) is coated on the detector side of the AFM cantilever which enhances the reflectivity of the laser beam by a factor of about 2.5. Furthermore it prevents light from interfering within the AFM cantilever. As the coating is nearly stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

This AFM probe features alignment grooves on the back side of the holder chip. These grooves fit to the NANOSENSORS Alignment Chip.

Timofeeva M, Kenzhebayeva Y, Alekseevskiy P, Efimova A, Abramov AN, Shipilovskikh S, Novikov AS, Somov NV, Pavlov DI, Yu X, Potapov AS
Topological Design of Pyrene‐Based Metal‐Organic Framework Nanosheets as a Luminescent Thermometer for Live Bioimaging
 Advanced Functional Materials. 2025 Apr 7:2425904
DOI: https://doi.org/10.1002/adfm.202425904


Alekseevskiy PV, Yu X, Efimova AS, Zhestkij NA, Mezenov YA, Kenzhebayeva YA, Povarov SA, Lubimova A, Bachinin SV, Stepanidenko EA, Dyachuk V
Ultrathin Lanthanide‐Based Metal‐Organic Nanosheets with Thickness‐and Temperature‐Driven Light Emission
Laser & Photonics Reviews. 2025 Mar 6:2401912
DOI: https://doi.org/10.1002/lpor.202401912


Zeng J, Heilig S, Ryma M, Groll J, Li C, Matsusaki M
Outermost Cationic Surface Charge of Layer‐by‐Layer Films Prevents Endothelial Cells Migration for Cell Compartmentalization in Three‐Dimensional Tissues
Advanced Science. 2025 May;12(19):2417538
DOI: https://doi.org/10.1002/advs.202417538


Kenzhebayeva Y, Gorbunova I, Dolgopolov A, Dmitriev MV, Atabaev TS, Stepanidenko EA, Efimova AS, Novikov AS, Shipilovskikh S, Milichko VA
Self‐Assembly of Hydrogen‐Bonded Organic Crystals on Arbitrary Surfaces for Efficient Amplified Spontaneous Emission
Advanced Photonics Research. 2024 Feb;5(2):2300173
DOI: https://doi.org/10.1002/adpr.202300173


Zhestkij NA, Efimova AS, Kenzhebayeva Y, Povarov SA, Alekseevskiy PV, Rzhevskiy SS, Shipilovskikh SA, Milichko VA
Grayscale to Multicolor Laser Writing Inside a Label‐Free Metal‐Organic Frameworks
Advanced Functional Materials. 2024 Jul;34(30):2311235
DOI: https://doi.org/10.1002/adfm.202311235


Kenzhebayeva YA, Kulachenkov NK, Rzhevskiy SS, Slepukhin PA, Shilovskikh VV, Efimova A, Alekseevskiy P, Gor GY, Emelianova A, Shipilovskikh S, Yushina ID
Light-driven anisotropy of 2D metal-organic framework single crystal for repeatable optical modulation
Communications materials. 2024 Apr 10;5(1):48
DOI: https://doi.org/10.1038/s43246-024-00485-5


Wilson RE, Denisin AK, Dunn AR, Pruitt BL
3D Microwell platforms for control of single cell 3D geometry and intracellular organization
Cellular and Molecular Bioengineering. 2021 Feb;14(1):1-4
DOI: https://doi.org/10.1007/s12195-020-00646-9


Jetzschmann KJ, Tank S, Jágerszki G, Gyurcsányi RE, Wollenberger U, Scheller FW
Bio‐electrosynthesis of vectorially imprinted polymer nanofilms for Cytochrome P450cam
ChemElectroChem. 2019 Mar 15;6(6):1818-23
DOI: https://doi.org/10.1002/celc.201801851


Hu X, Nanney W, Umeda K, Ye T, Martini A
Combined experimental and simulation study of amplitude modulation atomic force microscopy measurements of self-assembled monolayers in water
Langmuir. 2018 Jul 30;34(33):9627-33
DOI: https://doi.org/10.1021/acs.langmuir.8b01609


Collins C, Denisin AK, Pruitt BL, Nelson WJ
Changes in E-cadherin rigidity sensing regulate cell adhesion.
Proceedings of the National Academy of Sciences. 2017 Jul 18;114(29):E5835-44.
DOI: https://doi.org/10.1073/pnas.1618676114


Denisin AK, Pruitt BL
Tuning the range of polyacrylamide gel stiffness for mechanobiology applications
ACS applied materials & interfaces. 2016 Aug 31;8(34):21893-902
DOI: https://doi.org/10.1021/acsami.5b09344


Ebeling D, Bradler S, Roling B, Schirmeisen A
3-Dimensional Structure of a Prototypical Ionic Liquid–Solid Interface: Ionic Crystal-Like Behavior Induced by Molecule–Substrate Interactions
The Journal of Physical Chemistry C. 2016 Jun 9;120(22):11947-55
DOI: https://doi.org/10.1021/acs.jpcc.6b02232


Payam AF, Martin-Jimenez D, Garcia R
Force reconstruction from tapping mode force microscopy experiments
Nanotechnology. 2015 Apr 16;26(18):185706
DOI: https://doi.org/10.1088/0957-4484/26/18/185706


Varničić M, Bettenbrock K, Hermsdorf D, Vidaković-Koch T, Sundmacher K.
Combined electrochemical and microscopic study of porous enzymatic electrodes with direct electron transfer mechanism
Rsc Advances. 2014;4(69):36471-9
DOI: https://doi.org/10.1039/C4RA07495E


Ebeling D, Solares SD
Amplitude modulation dynamic force microscopy imaging in liquids with atomic resolution: comparison of phase contrasts in single and dual mode operation
Nanotechnology. 2013 Mar 12;24(13):135702
DOI: https://doi.org/10.1088/0957-4484/24/13/135702


Umeda KI, Oyabu N, Kobayashi K, Hirata Y, Matsushige K, Yamada H
High-resolution frequency-modulation atomic force microscopy in liquids using electrostatic excitation method
Applied Physics Express. 2010 Jun 4;3(6):065205
DOI: https://doi.org/10.1143/APEX.3.065205