PPP-CONTSCPt

Cantilever data:
Property Nominal Value Specified Range
Resonance Frequency [kHz] 25 1 - 57
Force Constant [N/m] 0.2 0.01 - 1.87
Length [µm] 225 215 - 235
Mean Width [µm] 48 40 - 55
Thickness [µm] 1 0.1 - 2
Order codes and shipping units:
Order Code AFM probes per pack Data sheet
PPP-CONTSCPt-10 10 of all probes
PPP-CONTSCPt-20 20 of all probes
PPP-CONTSCPt-50 50
NANOSENSORS™ PointProbe® Plus AFM Probes

PointProbe® Plus Contact Mode Short Cantilever -PtIr5 Coating

The PointProbe® Plus (PPP) combines high application versatility and compatibility with most commercial SPMs. The typical AFM tip radius of less than 7 nm and the minimized variation in AFM tip shape provide reproducible images and enhanced resolution.

The NANOSENSORS™ PPP-CONTSCPt is an alternative AFM cantilever type for contact mode applications. The length of AFM cantilever is reduced with respect to the preferred contact mode type enabling easier exchange with non-contact mode AFM probes for some AFM instruments. Additionally, this AFM probe type allows the application for lateral or friction force mode.

The AFM probe offers unique features:

  • metallic conductivity of the AFM tip
  • radius of curvature better than 25 nm
  • AFM tip height 10 - 15 µm
  • high mechanical Q-factor for high sensitivity
  • alignment grooves on backside of silicon holder chip
  • precise alignment of the AFM cantilever position (within +/- 2 µm) when used with the Alignment Chip
  • compatible with PointProbe® Plus XY-Alignment Series

The PtIr5 coating is an approximately 25 nm thick double layer of chromium and platinum iridium5 on both sides of the AFM cantilever. The tip side coating enhances the conductivity of the AFM tip and allows electrical contacts. The detector side coating enhances the reflectivity of the laser beam by a factor of about 2 and prevents light from interfering within the AFM cantilever. The coating process is optimized for stress compensation and wear resistance. As the coating is nearly stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

Please note: Wear at the AFM tip can occur if operating in contact-, friction- or force modulation mode.

This AFM probe features alignment grooves on the back side of the holder chip. These grooves fit to the NANOSENSORS Alignment Chip.

Mao S, Zhang X, Yang J, Wei H, Wu Y, Yang T, Cao B
Synaptic Plasticity Simulation of Optoelectronic Memristors Based on the (SrTiO3) x/(BaTiO3) y/(CaTiO3) z Ferroelectric Superlattices
ACS Applied Electronic Materials. 2025 May 22;7(11):5133-42
DOI: https://doi.org/10.1021/acsaelm.5c00545


Harris L, Hossain MJ, Qui M, Zhang R, Ma P, Chen T, Gu J, Tongay SA, Celano U
Sparse C-AFM: a deep learning method for fast and accurate characterization of MoS2 with conductive atomic force microscopy.
InLow-Dimensional Materials and Devices 2025 2025 Sep 17 (Vol. 13582, pp. 108-115). SPIE.
DOI: https://doi.org/10.1117/12.3067427


Diaz M, Mohayman Z, Shozib I, Tu HQ, Kushima A
Accelerated Li Penetration and Crack Propagation Due to Mechanical Degradation of Sulfide‐Based Solid Electrolyte
Small Methods. 2024 Oct;8(10):2301582
DOI: https://doi.org/10.1002/smtd.202301582


Kim Y, Lee CS, Son S, Shin KW, Byun KE, Shin HJ, Lee Z, Shin HJ
Spiral‐Driven Vertical Conductivity in Nanocrystalline Graphene
Small. 2024 Feb;20(7):2308176.
DOI: https://doi.org/10.1002/smll.202308176


Pruchnik BC, Putek PA, Gotszalk TP
Wavelet-based information theory in quantitative assessment of AFM images’ quality
Scientific Reports. 2024 Feb 18;14(1):3996
DOI: https://doi.org/10.1038/s41598-024-53846-y


Moronkeji OE, Das D, Lee S, Chang KM, Chasiotis I.
Local electrical conductivity of carbon black/PDMS nanocomposites subjected to large deformations
Journal of Composite Materials. 2023 Feb;57(4):507-19.
DOI: https://doi.org/10.1177/00219983231156253


Park S, Lee D, Kang J, Choi H, Park JH
Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array.
Nature Communications. 2023 Oct 25;14(1):6778.
DOI: https://doi.org/10.1038/s41467-023-41991-3


Vu NT, Loh L, Chen Y, Wu Q, Verzhbitskiy IA, Watanabe K, Taniguchi T, Bosman M, Ang YS, Ang LK, Trushin M
Single atomic defect conductivity for selective dilute impurity imaging in 2D semiconductors
ACS nano. 2023 Aug 11;17(16):15648-55
DOI: https://doi.org/10.1021/acsnano.3c02758


Chen Y, Wei H, Wu Y, Yang T, Cao B
Photovoltaic memristors based on photoelectric synaptic plasticity of a bulk photovoltaic effect device
Journal of Materials Chemistry C. 2022;10(45):17386-97
DOI: https://doi.org/10.1039/D2TC03800E


Chen Y, Wei H, Wu Y, Cao B
Impact of ferroelectric domain structure on bulk photovoltaic effect of epitaxial BiFe1− xCoxO3 films
Advanced Electronic Materials. 2022 May;8(5):2101043
DOI: https://doi.org/10.1002/aelm.202101043


Zeng Q, Zeng K
Strong phonon-cavity coupling and parametric interaction in a single microcantilever under ambient conditions
Journal of Physics D: Applied Physics. 2021 Sep 16;54(47):475307
DOI: https://doi.org/10.1088/1361-6463/ac1af3


Na YS, Kim JH, Kang S, Jeong JH, Park S, Kim DH, Ihm K, Watanabe K, Taniguchi T, Kwon YK, Kim YD
Modulation of optical and electrical properties in hexagonal boron nitride by defects induced via oxygen plasma treatment.
2D Materials. 2021 Oct 18;8(4):045041
DOI: https://doi.org/10.1088/2053-1583/ac2c10


Sun Q, Oh JA, Lu L, Zeng K.
Response and Implication of NASICON Solid-State Electrolytes to Local Electrical Stimulation: From Surface Engineering to Interfacial Manipulation
ACS Applied Materials & Interfaces. 2021 Sep 23;13(39):46588-97
DOI: https://doi.org/10.1021/acsami.1c12059


Soliman AI, Wu CT, Utsunomiya T, Ichii T, Sugimura H
Controlled Growth of Organosilane Micropatterns on Hydrophilic and Hydrophobic Surfaces Templated by Vacuum Ultraviolet Photolithography
Langmuir. 2021 Nov 15;37(47):13932-40
DOI: https://doi.org/10.1021/acs.langmuir.1c02516


Kim JH, Hyun C, Kim H, Dash JK, Ihm K, Lee GH
Thickness-insensitive properties of α-MoO3 nanosheets by weak interlayer coupling
Nano letters. 2019 Nov 8;19(12):8868-76.
DOI: https://doi.org/10.1021/acs.nanolett.9b03701


Wu CF, Lo JH, Wang CA, Ruan J
Horizontal Dendritic Stacking of Methanofullerene Single Crystals upon Diffusion‐Limited Aggregation.
Macromolecular Chemistry and Physics. 2018 Apr;219(8):1800014
DOI: https://doi.org/10.1002/macp.201800014


Soliman AI, Utsunomiya T, Ichii T, Sugimura H
Vacuum ultraviolet treatment of acid-and ester-terminated self-assembled monolayers: chemical conversions and friction reduction
Langmuir. 2018 Feb 16;34(10):3228-36
DOI: https://doi.org/10.1021/acs.langmuir.7b04327


Yazici E, Yanik S, Yilmaz MB
Graphene oxide nano-domain formation via wet chemical oxidation of graphene
Carbon. 2017 Jan 1;111:822-7.
DOI: https://doi.org/10.1016/j.carbon.2016.10.062


Wu FC, Li YH, Tsou CJ, Tung KC, Yen CT, Chou FS, Tang FC, Chou WY, Ruan J, Cheng HL
Synergistic Effects of Binary-Solvent Annealing for Efficient Polymer–Fullerene Bulk Heterojunction Solar Cells
ACS Applied Materials & Interfaces. 2015 Sep 2;7(34):18967-76
DOI: https://doi.org/10.1021/acsami.5b05692