PPP-CONTAuD

Cantilever data:
Property Nominal Value Specified Range
Resonance Frequency [kHz] 13 6 - 21
Force Constant [N/m] 0.2 0.02 - 0.77
Length [µm] 450 440 - 460
Mean Width [µm] 50 42.5 - 57.5
Thickness [µm] 2 1 - 3
Order codes and shipping units:
Order Code AFM probes per pack Data sheet
PPP-CONTAuD-10 10 of all probes
NANOSENSORS™ PointProbe® Plus AFM Probes

PointProbe® Plus Contact Mode - Au Coating (Detector side)

The PointProbe® Plus (PPP) combines high application versatility and compatibility with most commercial SPMs. The typical AFM tip radius of less than 7 nm and the minimized variation in AFM tip shape provide reproducible images and enhanced resolution.

NANOSENSORS™ PPP-CONTAuD probes are designed for contact mode (repulsive mode) AFM imaging. This AFM probe can also be used for force-distance spectroscopy mode or pulsed force mode (PFM). The CONT type is optimized for high sensitivity due to a low force constant.

The AFM probe offers unique features:

  • guaranteed AFM tip radius of curvature < 10 nm
  • AFM tip height 10 - 15 µm
  • highly doped silicon to dissipate static charge
  • Au coating on detector side of AFM cantilever
  • chemically inert

A metallic layer (Au) is coated on the detector side of the AFM cantilever which enhances the reflectivity of the laser beam by a factor of about 2.5. Furthermore it prevents light from interfering within the AFM cantilever. As the coating is nearly stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

This AFM probe features alignment grooves on the back side of the holder chip. These grooves fit to the NANOSENSORS Alignment Chip.

Kano J, Wang H, Zhang H, Noguchi M
Roles of DKK3 in cellular adhesion, motility, and invasion through extracellular interaction with TGFBI
The FEBS Journal. 2022 Oct;289(20):6385-99
DOI: https://doi.org/10.1111/febs.16529


Nelson MM, Hoff JD, Zeese ML, Corfas G
Poly (ADP-Ribose) Polymerase 1 Regulates Cajal–Retzius Cell Development and Neural Precursor Cell Adhesion
Frontiers in Cell and Developmental Biology. 2021 Oct 11;9:693595
DOI: https://doi.org/10.3389/fcell.2021.693595


Flater EE, Mugdha AC, Gupta S, Hudson WA, Fahrenkamp AA, Killgore JP, Wilson JW
Error estimation and enhanced stiffness sensitivity in contact resonance force microscopy with a multiple arbitrary frequency lock-in amplifier (MAFLIA)
Measurement Science and Technology. 2020 Aug 26;31(11):115009
DOI: https://doi.org/10.1088/1361-6501/ab97f9


Pulka-Ziach K, Puszko AK, Juhaniewicz-Debinska J, Sek S
Electron transport and a rectifying effect of oligourea foldamer films entrapped within nanoscale junctions
The Journal of Physical Chemistry C. 2018 Dec 19;123(2):1136-41
DOI: https://doi.org/10.1021/acs.jpcc.8b11046


Pulka-Ziach K, Sęk S
α-Helicomimetic foldamers as electron transfer mediators
Nanoscale. 2017;9(39):14913-20
DOI: https://doi.org/10.1039/C7NR05209J


Liu Z, Jeong Y, Menq CH
Real-time reconstruction of multimode tip motion of microcantilevers in dynamic atomic force microscopy
IEEE/ASME Transactions on Mechatronics. 2015 Aug 25;21(2):825-37
DOI: https://doi.org/10.1109/TMECH.2015.2472557


Liu Z, Jeong Y, Menq CH
Calibration of measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy using a contact detection method
Review of Scientific Instruments. 2013 Feb 1;84(2)
DOI: https://doi.org/10.1063/1.4790194


Lopez-Perez DE, Revilla-Lopez G, Jacquemin D, Zanuy D, Palys B, Sek S, Aleman C
Intermolecular interactions in electron transfer through stretched helical peptides
Physical Chemistry Chemical Physics. 2012;14(29):10332-44
DOI: https://doi.org/10.1039/C2CP40761B


Matyszewska D, Sek S, Bilewicz R.
Electrochemical and microscopic characteristics of thiolipid layers as simple models of cell membranes
Langmuir. 2012 Mar 20;28(11):5182-9.
DOI: https://doi.org/10.1021/la2044027