PPP-NCSTAu

Cantilever data:
Property Nominal Value Specified Range
Resonance Frequency [kHz] 160 75 - 265
Force Constant [N/m] 7.4 1.2 - 29
Length [µm] 150 140 - 160
Mean Width [µm] 27 19.5 - 34.5
Thickness [µm] 2.8 1.8 - 3.8
Order codes and shipping units:
Order Code AFM probes per pack Data sheet
PPP-NCSTAu-10 10 of all probes
NANOSENSORS™ PointProbe® Plus AFM Probes

PointProbe® Plus Non-Contact / Soft Tapping Mode - Au Coating

The PointProbe® Plus (PPP) combines high application versatility and compatibility with most commercial SPMs. The typical AFM tip radius of less than 7 nm and the minimized variation in AFM tip shape provide reproducible images and enhanced resolution.

NANOSENSORS™ PPP-NCSTAu AFM probes are designed for non-contact or soft tapping mode imaging. The combination of soft AFM cantilever and fairly high resonance frequency enables stable and fast measurements with reduced AFM tip-sample interaction. This feature significantly reduces AFM tip wear and sample wear at the same time.

The AFM probe offers unique features:

  • metallic conductivity of the AFM tip
  • AFM tip height 10 - 15 µm
  • Au coating on both sides of the AFM cantilever
  • chemically inert
  • high mechanical Q-factor for high sensitivity

A metallic layer (Au) is coated on both sides of the AFM cantilever. The tip side coating enhances the conductivity of the AFM tip and allows electrical contacts - the typical AFM tip radius of curvature is less than 50nm. The detector side coating enhances the reflectivity of the laser beam by a factor of 2.5 and prevents light from interfering within the AFM cantilever. The coating process is optimized for stress compensation. As the coating is nearly stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

Please note: Wear at the AFM tip can occur if operating in contact-, friction- or force modulation mode.

This AFM probe features alignment grooves on the back side of the holder chip. These grooves fit to the NANOSENSORS Alignment Chip.

Ren S, Park KR, Regmi B, Choi W, Cho YS, Kim SJ, Choi H, Kim YM, Kang J, Han H, Kim SG
Ultrastable One‐Dimensional Ti2S Electride Support for an Efficient and Durable Bifunctional Electrocatalyst
Carbon Energy. 2025 Oct;7(10):e70070.
DOI: https://doi.org/10.1002/cey2.70070


Rupert J, Di Palma F, Colantoni A, Intze A, Temperini ME, Gilberti V, Zacco E, Tartaglia GG
RNA interactions drive structural and functional diversification of alpha-synuclein fibrils
bioRxiv. 2025:2025-11
DOI: https://doi.org/10.1101/2025.11.30.691421


Fujii S, Tomida R, Yamane A, Nabeyama K, Ohkura H, Shinokubo H, Nishino T
Interaction strength in molecular junctions consisting of π-stacked antiaromatic molecules
Journal of Materials Chemistry C. 2024;12(5):1640-3
DOI: https://doi.org/10.1039/D3TC04166B


Dai D, Ciesielski R, Hoehl A, Kästner B, Siebenkotten D
Core–Shell Nanoparticle Resonances in Near-Field Microscopy Revealed by Fourier-Demodulated Full-Wave Simulations
Nano Letters. 2024 Oct 15;24(43):13747-53
DOI: https://doi.org/10.1021/acs.nanolett.4c03940


Jang H, Abbey S, Frimpong B, Nguyen CV, Ziolkowski P, Oppitz G, Kim M, Song JY, Shin HS, Jung YS, Oh MW
Comparative study of thermoelectric properties of Sb2Si2Te6 and Bi2Si2Te6
ACS Applied Materials & Interfaces. 2022 Jan 3;14(1):1270-9
DOI: https://doi.org/10.1021/acsami.1c23351


Chatzimanolis K, Rogdakis K, Tsikritzis D, Tzoganakis N, Tountas M, Krassas M, Bellani S, Najafi L, Martín-García B, Oropesa-Nuñez R, Prato M
Inverted perovskite solar cells with enhanced lifetime and thermal stability enabled by a metallic tantalum disulfide buffer layer
Nanoscale Advances. 2021;3(11):3124-35
DOI: https://doi.org/10.1039/D1NA00172H


Goikoetxea M, Amenabar I, Chimenti S, Paulis M, Leiza JR, Hillenbrand R
Cross-sectional chemical nanoimaging of composite polymer nanoparticles by infrared nanospectroscopy
Macromolecules. 2021 Jan 7;54(2):995-1005
DOI: https://doi.org/10.1021/acs.macromol.0c02287


Kang Y, Jeon D, Kim T
Direct observation of the thickness-dependent dielectric response of MoS2 and WSe2
The Journal of Physical Chemistry C. 2020 Jul 23;124(33):18316-20.
DOI: https://doi.org/10.1021/acs.jpcc.0c04438


Mishra A, Shaikh S, Kumar A
Redispersion of cryoaggregated gold nanoparticle by means of laser irradiation and effect on biological interactions
Nanotechnology. 2020 Jul 29;31(43):435601
DOI: https://doi.org/10.1088/1361-6528/aba2a1


Wu FC, Li BJ, Chou WY, Cheng HL
Multifunctional interfacial layers from a one-step process for effective charge capturing and erasing in low-voltage-driven organic thin-film transistors
ACS Applied Electronic Materials. 2020 Apr 30;2(5):1413-20
DOI: https://doi.org/10.1021/acsaelm.0c00191


Hong K, Lee TH, Suh JM, Park JS, Kwon HS, Choi J, Jang HW
Direct observation of surface potential distribution in insulation resistance degraded acceptor-doped BaTiO3 multilayered ceramic capacitors
Electronic Materials Letters. 2018 Sep;14(5):629-35
DOI: https://doi.org/10.1007/s13391-018-0066-6


Kästner B, Schmähling F, Hornemann A, Ulrich G, Hoehl A, Kruskopf M, Pierz K, Raschke MB, Wübbeler G, Elster C
Compressed sensing FTIR nano-spectroscopy and nano-imaging
Optics Express. 2018 Jun 28;26(14):18115-24
DOI: https://doi.org/10.1364/OE.26.018115


Kusch P, Morquillas Azpiazu N, Mueller NS, Mastel S, Pascual JI, Hillenbrand R
Combined tip-enhanced Raman spectroscopy and scattering-type scanning near-field optical microscopy
The Journal of Physical Chemistry C. 2018 Jun 15;122(28):16274-80
DOI: https://doi.org/10.1021/acs.jpcc.8b03637


Lim JY, Kim M, Jeong Y, Ko KR, Yu S, Shin HG, Moon JY, Choi YJ, Yi Y, Kim T, Im S
Van der Waals junction field effect transistors with both n-and p-channel transition metal dichalcogenides
npj 2D Materials and Applications. 2018 Nov 5;2(1):37
DOI: https://doi.org/10.1038/s41699-018-0082-2


Shin HG, Yoon HS, Kim JS, Kim M, Lim JY, Yu S, Park JH, Yi Y, Kim T, Jun SC, Im S
Vertical and in-plane current devices using NbS2/n-MoS2 van der Waals Schottky junction and graphene contact
Nano letters. 2018 Feb 5;18(3):1937-45
DOI: https://doi.org/10.1021/acs.nanolett.7b05338


Hermann P, Kästner B, Hoehl A, Kashcheyevs V, Patoka P, Ulrich G, Feikes J, Ries M, Tydecks T, Beckhoff B, Rühl E
Enhancing the sensitivity of nano-FTIR spectroscopy
Optics express. 2017 Jul 5;25(14):16574-88
DOI: https://doi.org/10.1364/OE.25.016574


Tiginyanu I, Stevens-Kalceff MA, Sarua A, Braniste T, Monaico E, Popa V, Andrade HD, Thomas JO, Raevschi S, Schulte K, Adelung R
Self-organized three-dimensional nanostructured architectures in bulk GaN generated by spatial modulation of doping.
ECS journal of solid state science and technology. 2016 Feb 18;5(5):P218
DOI: https://doi.org/10.1149/2.0091605jss


Li CH, McCreary KM, Jonker BT
Spatial control of photoluminescence at room temperature by ferroelectric domains in monolayer WS2/PZT hybrid structures
ACS omega. 2016 Dec 31;1(6):1075-80
DOI: https://doi.org/10.1021/acsomega.6b00302


Cramer T, Travaglini L, Lai S, Patruno L, de Miranda S, Bonfiglio A, Cosseddu P, Fraboni B
Direct imaging of defect formation in strained organic flexible electronics by Scanning Kelvin Probe Microscopy
Scientific Reports. 2016 Dec 2;6(1):38203
DOI: https://doi.org/10.1038/srep38203


Andrade HD, Othman MZ, O’Donnell KM, Lay JH, May PW, Fox NA, Morin J, Renault O
Use of energy-filtered photoelectron emission microscopy and Kelvin probe force microscopy to visualise work function changes on diamond thin films terminated with oxygen and lithium mono-layers for thermionic energy conversion
International journal of nanotechnology. 2014 Jan 1;11(9-1011):796-807.
DOI: https://doi.org/10.1504/IJNT.2014.063789


Kuzume A, Zhumaev U, Li J, Fu Y, Füeg M, Estévez M, Borjas Z, Wandlowski T, Esteve-Nuñez
An in situ surface electrochemistry approach towards whole-cell studies: the structure and reactivity of a Geobacter sulfurreducens submonolayer on electrified metal/electrolyte interfaces
Physical Chemistry Chemical Physics. 2014;16(40):22229-36
DOI: https://doi.org/10.1039/C4CP03357D