PPP-NCSTPt

Cantilever data:
Property Nominal Value Specified Range
Resonance Frequency [kHz] 160 75 - 265
Force Constant [N/m] 7.4 1.2 - 29
Length [µm] 150 140 - 160
Mean Width [µm] 27 19.5 - 34.5
Thickness [µm] 2.8 1.8 - 3.8
Order codes and shipping units:
Order Code AFM probes per pack Data sheet
PPP-NCSTPt-10 10 of all probes
PPP-NCSTPt-20 20 of all probes
PPP-NCSTPt-50 50
PPP-NCSTPt-W 380 of up to 32 probes
NANOSENSORS™ PointProbe® Plus AFM Probes

PointProbe® Plus Non-Contact / Soft Tapping Mode - PtIr5 Coating

The PointProbe® Plus (PPP) combines high application versatility and compatibility with most commercial SPMs. The typical AFM tip radius of less than 7 nm and the minimized variation in AFM tip shape provide reproducible images and enhanced resolution.

NANOSENSORS™ PPP-NCSTPt AFM probes are designed for non-contact or soft tapping mode imaging. The combination of soft AFM cantilever and fairly high resonance frequency enables stable and fast measurements with reduced tip-sample interaction. This feature significantly reduces AFM tip wear and sample wear at the same time.

The AFM probe offers unique features:

  • metallic conductivity of the AFM tip
  • radius of curvature better than 25 nm
  • AFM tip height 10 - 15 µm
  • high mechanical Q-factor for high sensitivity

The PtIr5 coating is an approximately 25 nm thick double layer of chromium and platinum iridium5 on both sides of the AFM cantilever. The tip side coating enhances the conductivity of the AFM tip and allows electrical contacts. The detector side coating enhances the reflectivity of the laser beam by a factor of about 2 and prevents light from interfering within the AFM cantilever. The coating process is optimized for stress compensation and wear resistance. As the coating is nearly stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

Please note: Wear at the AFM tip can occur if operating in contact-, friction- or force modulation mode.

This AFM probe features alignment grooves on the back side of the holder chip. These grooves fit to the NANOSENSORS Alignment Chip.

Borowec J, Rein L, Gorin N, Basak S, Dobrenizki L, Schmid G, Jodat E, Karl A, Eichel RA, Hausen F
Nanomechanical and nanoelectrical analysis of the proton exchange membrane water electrolyzer anode–impact of reinforcement fibers and porous transport layer
Journal of Materials Chemistry A. 2025;13(9):6347-56
DOI: https://doi.org/10.1039/D4TA07367C


Mowe P, Pfeiffer F, Maus O, Zeier WG, Winter M, Neuhaus K
Relationship between structure and room-temperature charge transport in highly acceptor-doped ceria and zirconia.
Available at SSRN 5253541.
DOI: https://doi.org/10.1016/j.ssi.2025.116955


Wong SS, Lin ZY, Ho SZ, Hsu CE, Li PH, Chen CY, Huang YF, Chang KE, Hsieh YC, Chen CH, Lee MH
Epitaxial ferroelectric hexagonal boron nitride grown on graphene
Advanced Materials. 2025 Apr;37(15):2414442
DOI: https://doi.org/10.1002/adma.202414442


Borowec J, Poc JP, Basak S, Dobrenizki L, Schmid G, Jodat E, Karl A, Eichel RA, Hausen F
Proton Exchange Membrane Water Electrolyzer Cathode: A Nanomechanical and Nanoelectrical Analysis
Journal of The Electrochemical Society. 2025 May 19;172(5):054511
DOI: https://doi.org/10.1149/1945-7111/add213


Uemura Y, Matsuoka S, Arai S, Harada J, Hasegawa T
Intersecting multiaxial domain walls in plastic ferroelectric crystal films
Physical Review Materials. 2023 Mar;7(3):035601
DOI: https://doi.org/10.1103/PhysRevMaterials.7.035601


Chiou MH, Verweyen E, Diddens D, Wichmann L, Schmidt C, Neuhaus K, Choudhary A, Bedrov D, Winter M, Brunklaus G
Selection of polymer segment species matters for electrolyte properties and performance in lithium metal batteries
ACS Applied Energy Materials. 2023 Apr 6;6(8):4422-36
DOI: https://doi.org/10.1021/acsaem.3c00571


Neuhaus K, Schmidt C, Fischer L, Meulenberg WA, Ran K, Mayer J, Baumann S
Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy.
Beilstein journal of nanotechnology. 2021 Dec 15;12(1):1380-91
DOI: https://doi.org/10.3762/bjnano.12.102


Liou YD, Ho SZ, Tzeng WY, Liu YC, Wu PC, Zheng J, Huang R, Duan CG, Kuo CY, Luo CW, Chen YC
Extremely Fast Optical and Nonvolatile Control of Mixed‐Phase Multiferroic BiFeO3 via Instantaneous Strain Perturbation
Advanced Materials. 2021 Feb;33(5):2007264
DOI: https://doi.org/10.1002/adma.202007264


Uemura Y, Arai S, Tsutsumi JY, Matsuoka S, Yamada H, Kumai R, Horiuchi S, Sawa A, Hasegawa
Field-modulation imaging of ferroelectric domains in molecular single-crystal films
Physical Review Applied. 2019 Jan 1;11(1):014046
DOI: https://doi.org/10.1103/PhysRevApplied.11.014046


Rajput NS, Le Marrec F, El Marssi M, Jouiad M
Fabrication and manipulation of nanopillars using electron induced excitation
Journal of Applied Physics. 2018 Aug 21;124(7)
DOI: https://doi.org/10.1063/1.5036759


Kim KL, Huber JE
Mapping of ferroelectric domain structure using angle-resolved piezoresponse force microscopy
Review of Scientific Instruments. 2015 Jan 1;86(1)
DOI: https://doi.org/10.1063/1.4905334


Wu S, Wu MY, Huang JL, Lii DF
Characterization and Piezoelectric Properties of Reactively Sputtered (S c, A l) N Thin Films on Diamond Structure
International Journal of Applied Ceramic Technology. 2014 Sep;11(5):894-900
DOI: https://doi.org/10.1111/ijac.12068


Umeda KI, Kobayashi K, Oyabu N, Hirata Y, Matsushige K, Yamada H
Practical aspects of Kelvin-probe force microscopy at solid/liquid interfaces in various liquid media
Journal of Applied Physics. 2014 Oct 7;116(13)
DOI: https://doi.org/10.1063/1.4896881


Li T, Zeng K
Nanoscale piezoelectric and ferroelectric behaviors of seashell by piezoresponse force microscopy
Journal of Applied Physics. 2013 May 14;113(18)
DOI: https://doi.org/10.1063/1.4801982


He Q, Ren X
Scanning probe imaging of surface ion conductance in an anion exchange membrane
Journal of Power Sources. 2012 Dec 15;220:373-6
DOI: https://doi.org/10.1016/j.jpowsour.2012.07.039


Vasudevan RK, Chen YC, Tai HH, Balke N, Wu P, Bhattacharya S, Chen LQ, Chu YH, Lin IN, Kalinin SV, Nagarajan V
Exploring topological defects in epitaxial BiFeO3 thin films
Acs Nano. 2011 Feb 22;5(2):879-87
DOI: https://doi.org/10.1021/nn102099z