Tag Archives: uniqprobe

Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils

For this article the AFM images taken with tapping mode in Tris buffer solution were performed with the NANOSENSORS qp-BioAC (cantilever 3, resonance frequency 30kHz).

Figure 5 from Yordanova et. al. "Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils" - AFM image of the Zn2+: GnRH [6-D-Phe] 10:1 complex. (a,b) Oligomers after preparation with tapping mode in Tris buffer solution (c,d) fibrils with tapping mode in air (z-scale indicates the average size of the formed oligomers and fibrils). NANOSENSORS qp-BioAC AFM probe was used to perform images in buffer solution
Figure 5 from Yordanova et. al. “Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils” – AFM image of the Zn2+: GnRH [6-D-Phe] 10:1 complex. (a,b) Oligomers after preparation with tapping mode in Tris buffer solution (c,d) fibrils with tapping mode in air (z-scale indicates the average size of the formed oligomers and fibrils).

Yordanka Yordanova, Willem Vanderlinden, Raphael Stoll, Daniel Rüdiger, Andreas Tosstorff, Wolfgang Zaremba, Gerhard Winter, Stefan Zahler & Wolfgang Friess
Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils
Nature Scientific Reports volume 8, Article number: 11280 (2018)
doi: https://doi.org/10.1038/s41598-018-29529-w
Please follow this external link to read the full article on the  Nature website: https://rdcu.be/4y9J

The article “Zn2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils” by Yordanova Y. et al. is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

Near-Field Plasmonic probe with Super Resolution and High Throughput and Signal-to-Noise Ratio

Plasmonic AFM tip using a quartz-like NANOSENSORS qp-CONT as basis, as described in: Ruei-Han Jiang et Al., Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio, Nano Letters Article ASAP DOI: 10.1021/acs.nanolett.7b04142, image courtesy of Ruei-Han Jiang, Department of Materials Science and Engineering National Tsing Hua University
Plasmonic AFM tip using a quartz-like NANOSENSORS Uniqprobe qp-CONT as basis, image courtesy of Ruei-Han Jiang, Department of Materials Science and Engineering, National Tsing Hua University

In the recently published article “New-Field Plasmonic probe with Super Resolution and High Throughput and Signal-to-Noise Ratio by Ta-Jen Yen et. Al. a plasmonic tip is described that could be employed in near-field optics, nanolithography, tip-enhanced Raman spectroscopy and other applications.

The authors of the article demonstrate what other papers have already talked about in the past: it is possible to use probes like the NANOSENSORS Uniqprobe qp-CONT as basis to make working probes for NSOM or TERS, by using radially polarized light. They go a step further by FIB tailoring the metal film that fully covers the transparent tip.

Congratulations to the authors!

You can find the full article if you follow this external link:

Ruei-Han Jiang, Chi Chen, Ding-Zheng Lin, He-Chun Chou, Jen-You Chu, and Ta-Jen Yen
Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio
Nano Letters Article ASAP
DOI: 10.1021/acs.nanolett.7b04142
http://pubs.acs.org/doi/full/10.1021/acs.nanolett.7b04142

A lot of work was done by research groups at the University of Neuchâtel, more than 10 years back, demonstrating the high resolution properties of microfabricated apertureless (fully metal coated) transparent quartz tips, where a connection between the observed high spatial resolution and longitudinally polarized fields confined at the probe apex was observed. The authors gave direct experimental evidence that, after injection of a radially polarized beam, a confined single spot is produced at the tip apex.

For further relevant papers, also refer to:

Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H.-P. Herzig, R. Dändliker,
Selective coupling of HE 11 and TM 01 modes into microfabricated fully metal-coated quartz probes, Ultramicroscopy 107, 158 (2007), https://doi.org/10.1016/j.ultramic.2006.07.004
https://www.sciencedirect.com/science/article/pii/S030439910600146X

Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, H.-P. Herzig,
Optical properties of microfabricated fully-metal-coated near-field probes in collection mode, J. Opt. Soc. Am. A/Vol. 22, No 7 (2005), https://doi.org/10.1364/JOSAA.22.001432
https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-22-7-1432

Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, H.-P. Herzig,
Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics, J. Appl. Phys. Lett., vol. 85, 5340 (2004), https://doi.org/10.1063/1.1827925
http://aip.scitation.org/doi/10.1063/1.1827925